首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A simple mathematical model for initial screening is presented that can aid in evaluating the relative risk to groundwater from applying nonpolar synthetic organic chemicals to soil. The basic premise is that the magnitude of the quotient of the chemical concentration of the water entering the aquifer and the maximum allowable concentration (as established by EPA or Health Departments) represents the health risk of a chemical. The chemical concentration of the soil water is estimated based on conservative, simplifying assumptions and requires only readily available data such as: basic soil properties (organic matter and saturated hydraulic conductivity), organic chemical properties (octanol-water partition coefficient and degradation rate) and environmental factors (recharge rate and depth to groundwater).The methodology was applied to assess the relative risk of organic chemicals in municipal sewage sludge and pesticides applied to agricultural land. The results are realistic.  相似文献   

3.
Phosphorus-based nutrient management will inevitably be required for land application of biosolids. Water-extractable phosphorus (WEP) in livestock manures is an indicator of phosphorus loss from agricultural watersheds and this study evaluated its use for biosolids. The WEP to total phosphorus percentage (PWEP) in 41 biosolids (representing a variety of wastewater and solids treatment processes) was compared to dairy and poultry manures and triple superphosphate fertilizer. The mean PWEP for conventionally treated and stabilized biosolids was 2.4%, which was significantly lower than inorganic fertilizer (85%), dairy manure (52%), and poultry manure (21%). Low biosolids PWEP is attributed to elevated aluminum and iron content from chemical additions during wastewater treatment and solids dewatering operations. Facilities using biological phosphorus removal had the highest mean biosolids PWEP (approximately 14%), whereas heat-dried biosolids had the lowest average PWEP (< approximately 0.5%). Paired samples of digested cake and the corresponding biosolids treated by processes to further reduce pathogens (i.e., thermal treatment, composting, and advanced alkaline stabilization) showed that these processes tended to reduce biosolids PWEP. Biosolids composition and processing mode exert a controlling influence on the potential for off-site phosphorus migration at land-application sites. Nutrient management policies for land-based recycling should account for the widely varying potential of organic amendments to cause soluble phosphorus losses in runoff and leaching.  相似文献   

4.
This study investigates the persistence of Triclosan (TCS), and its degradation product, Methyltriclosan (MeTCS), after land application of biosolids to an experimental agricultural plot under both till and no till. Surface soil samples (n = 40) were collected several times over a three years period and sieved to remove biosolids. Concentration of TCS in the soil gradually increased with maximum levels of 63.7 ± 14.1 ng g(-1) dry wt., far below the predicted maximum concentration of 307.5 ng g(-1) dry wt. TCS disappearance corresponded with MeTCS appearance, suggesting in situ formation. Our results suggest that soil incorporation and degradation processes are taking place simultaneously and that TCS background levels are achieved within two years. TCS half-life (t(0.5)) was determined as 104 d and MeTCS t(0.5), which was more persistent than TCS, was estimated at 443 d.  相似文献   

5.
Investigations of potential risk from biosolids generally indicate that land application does not threaten human or ecosystem health, but questions continue to arise concerning the environmental effects of this practice. This research project was initiated to evaluate ecotoxicity resulting from the amendment of soils with biosolids from municipal wastewater treatment plants. Toxicity was evaluated using standard tests, including earthworm mortality, growth, and reproduction; seedling germination and root elongation; microbial respiration; and nematode mortality and reproduction. Nineteen municipal wastewater treatment plants were identified to participate in an initial screening of toxicity, and five were chosen for a more detailed evaluation. In addition, two soils with historically high applications of high-metal biosolids were evaluated. Contaminants examined were zinc, copper, nickel, chromium, arsenic, cadmium, lead, and coplanar polychlorinated biphenyls (PCBs). Single applications had no effect on soil metal concentrations. Coplanar PCBs were not detectable in any of the soils or biosolids. All target organisms were sensitive to reference toxicants. Limited toxicity was observed in a small number of the amended soils, but no patterns emerged. Approximately one-half of the negative effects of biosolids on bioindicators could be attributed to routine properties, such as slight depression of pH and/or elevated salinity. None of the accumulated metal concentrations were excessive, and most would not be considered elevated. These observations suggest that current regulations for application of biosolids to soils are providing adequate ecosystem protection.  相似文献   

6.
A pilot study was conducted to compare odor emissions from a windrow process and an aerated static pile and to determine the odor reduction efficiency of a pilot two-phase biofilter for odor control of biosolids composting. Chemical compounds identified as responsible for odors from biosolids composting include ammonia, dimethyl disulfide, carbon disulfide, formic acid, acetic acid, and sulfur dioxide (or carbonyl sulfide). Aeration was found to reduce the concentration of ammonia, formic acid, and acetic acid by 72, 57, and 11%, respectively, compared with a nearby windrow, while dimethyl sulfide, carbon disulfide, and sulfur dioxide (or carbonyl sulfide) concentrations were below detection limits. Using dilution-to-threshold olfactometry, aeration followed by biofiltration was found to reduce the odor from biosolids composting by 98%. Biofiltration also altered the character of odor emissions from biosolids composting, producing a less offensive odor with an earthy character. Biofiltration was found to reduce the concentration of ammonia, dimethyl disulfide, carbon disulfide, formic acid, acetic acid, and sulfur dioxide (or carbonyl sulfide) by 99, 90, 32, 100, 34, and 100%, respectively. The concentrations of those odorants were estimated to be 3700, 110000, 26,37,5, and 1.2 times reported human detection limits before the two-phase biofilter, respectively, and 42,9600,18,0,3, and 0 times human detection limits after the biofilter, respectively.  相似文献   

7.
Land spreading nitrogen-rich municipal waste biosolids (NO3-N<256 mg N kg−1 dry weight, NH3-N∼23,080 mg N kg−1 dry weight, Total Kjeldahl N∼41,700 mg N kg−1 dry weight) to human food and non-food chain land is a practice followed throughout the US. This practice may lead to the recovery and utilization of the nitrogen by vegetation, but it may also lead to emissions of biogenic nitric oxide (NO), which may enhance ozone pollution in the lower levels of the troposphere. Recent global estimates of biogenic NO emissions from soils are cited in the literature, which are based on field measurements of NO emissions from various agricultural and non-agricultural fields. However, biogenic emissions of NO from soils amended with biosolids are lacking. Utilizing a state-of-the-art mobile laboratory and a dynamic flow-through chamber system, in-situ concentrations of nitric oxide (NO) were measured during the spring/summer of 1999 and winter/spring of 2000 from an agricultural soil which is routinely amended with municipal waste biosolids. The average NO flux for the late spring/summer time period (10 June 1999–5 August 1999) was 69.4±34.9 ng N m−2 s−1. Biosolids were applied during September 1999 and the field site was sampled again during winter/spring 2000 (28 February 2000–9 March 2000), during which the average flux was 3.6±1.7 ng N m−2 s−1. The same field site was sampled again in late spring (2–9 June 2000) and the average flux was 64.8±41.0 ng N m−2 s−1. An observationally based model, developed as part of this study, found that summer accounted for 60% of the yearly emission while fall, winter and spring accounted for 20%, 4% and 16% respectively. Field experiments were conducted which indicated that the application of biosolids increases the emissions of NO and that techniques to estimate biogenic NO emissions would, on a yearly average, underestimate the NO flux from this field by a factor of 26. Soil temperature and % water filled pore space (%WFPS) were observed to be significant variables for predicting NO emissions, however %WFPS was found to be most significant during high soil temperature conditions. In the range of pH values found at this site (5.8±0.3), pH was not observed to be a significant parameter in predicting NO emissions.  相似文献   

8.
Eight types of Class A biosolids were tested for fecal coliform (FC) reactivation and/or regrowth at 20, 35, and 50 degrees C for 21 days. Growth of FC did not occur at 20 or 50 degrees C, but it was observed in two samples incubated at 35 degrees C after a lag period of 48 hours. In undigested biosolids, final FC concentration exceeded 10(4) MPN/g, whereas in thermophilically digested biosolids, the final FC concentration remained below 10(3) MPN/g, as FC regrowth may have been affected by the presence of the anaerobic bacterial consortium responsible for the digestion process. Fecal-coliform reactivation and regrowth within treatment plant operations seem unlikely but can occur in land application of biosolids.  相似文献   

9.
Characteristics and behavior of raw and digested mixed liquor derived from a membrane bioreactor (MBR) and a full-scale activated-sludge (FSAS) facility were compared. The accumulation of nondegradable chemical oxygen demand in the MBR appears to play an important role in increasing the observed biological yield coefficient (Y(obs)), reducing average floc size, decreasing total suspended solids/total solids and volatile suspended solids/volatile solids (VS) ratios, and reducing specific-oxygen-uptake rates of the mixed liquor relative to FSAS-derived biological solids. Membrane bioreactor sludges exhibited lower VS destruction following 30 days mesophilic-anaerobic and aerobic digestion when compared to FSAS sludges. Significant deterioration in dewatering behavior was observed for the FSAS biosolids after anaerobic digestion and, to a lesser extent, following aerobic digestion. In comparison, digestion had a small affect on dewatering efficiency and conditioner requirements for MBR biosolids. Full-scale facilities using membrane separation may need to tailor digestion and dewatering processes to the specific characteristics of MBR sludges.  相似文献   

10.
The main objective of this research was to test the hypothesis that bioavailable protein and, more specifically, the sulfur-containing amino acids within the protein, can be degraded by proteolytic enzymes to produce odor-causing compounds--mainly volatile sulfur compounds (VSCs)--during biosolids storage. To achieve these objectives, samples of digester effluent and cake solids were collected at 11 different wastewater treatment plants in North America, and the samples were analyzed for protein and amino acid content and general protein-degrading enzyme activity. At the same time, cake samples were stored using headspace bottles, the concentration of VSCs were measured using gas chromatography, and olfactometry measurements were made by a trained odor panel. The results showed that the bound cake protein content and methionine content was well-correlated with VSC production and the detection threshold measured by the odor panel.  相似文献   

11.
A method for the detection of Cryptosporidium parvum oocysts in sediment and wastewater biosolids has been developed using immunomagnetic separation kits that were designed for use with water. This method requires no pretreatment of the sediment or biosolids samples before the commercial kit application. Oocyst recovery efficiencies from sediment and biosolids using the modified Dynal (Lake Success, New York) and Crypto-Scan commercial methods (Immucell Corporation, Portland, Maine) ranged from 20 to 60%. While the sensitivity of the method is dependent on the amount of sediment processed and the equivalent volume examined under the microscope, it was able to detect 0.48 oocysts per gram dry weight sediment. Using this method, Cryptosporidium parvum oocysts were found at levels as high as 97 oocysts/g of primary biosolids and at levels up to 4 oocysts/g in polluted sediment.  相似文献   

12.
The highest quality of biosolids is called exceptional quality. To qualify for this classification, biosolids must comply with three criteria: (1) metal concentrations, (2) vector-attraction reduction, and (3) the Class A pathogen-density requirements. The City of Los Angeles Bureau of Sanitation Hyperion Treatment Plant (HTP) (Playa del Rey, California) meets the first two requirements. Thus, the objective of this study was to ensure that HTP's biosolids production would meet the Class A pathogen-reduction requirements following the time-temperature regimen for batch processing (U.S. EPA, 1993; Subsection 32, Alternative 1). Because regulations require the pathogen limits to be met at the last point of plant control, biosolids sampling was not limited to immediately after the digesters, i.e., the digester outflows. The sampling extended to several locations in HTP's postdigestion train, in particular, the last points of plant control, i.e., the truck loading facility and the farm for land application. A two-stage, thermophilic-continuous-batch process, consisting of a battery of six egg-shaped digesters, was established in late 2001 for phase I of this study and modified in early 2002 for phase II. As the biosolids were discharged from the second-stage digesters, the Salmonella sp. (pathogen) and fecal-coliform (indicator) densities were well below the limits for Class A biosolids, even though the second-stage-digester temperatures were a few degrees below the temperature required by Alternative 1. Salmonella sp. densities remained below the Class A limit at all postdigestion sampling locations. Fecal-coliform densities were also below the Class A limit at postdigestion-sampling locations, except the truck-loading facility (phases I and II) and the farm for final use of the biosolids (phase II). Although federal regulations require one of the limits for either fecal coliforms or Salmonella sp. to be met, local regulations in Kern County, California, where the biosolids are land-applied, require compliance with both bacterial limits. Additional work identified dewatering, cooling of biosolids after the dewatering centrifuges, and contamination as possible factors in the rise in density of fecal coliforms. These results provided the basis for the full conversion of HTP to the Los Angeles continuous-batch, thermophilic-anaerobic-digestion process. During later phases of testing, this process was demonstrated to produce fully disinfected biosolids at the farm for land application.  相似文献   

13.
The U.S. Environmental Protection Agency (U.S. EPA) Part 503 Biosolids Rule requires the fecal coliform (indicator) or Salmonella species (pathogen) density requirements for Class A biosolids to be met at the last point of plant control (truck-loading facility and/or farm for land application). The three Southern Californian wastewater treatment plants in this study produced biosolids by thermophilic anaerobic digestion and all met the Class A limits for both fecal coliforms and Salmonella sp. in the digester outflow biosolids. At two plants, however, a recurrence of fecal coliforms was observed in postdigestion biosolids, which caused exceedance of the Class A limit for fecal coliforms at the truck-loading facility and farm for land application. Comparison of observations at the three plants and further laboratory tests indicated that the recurrence of fecal coliforms can possibly be related to the following combination of factors: (1) incomplete destruction of fecal coliforms during thermophilic anaerobic digestion, (2) contamination of Class A biosolids with fecal coliforms from external sources during postdigestion, (3) a large drop of the postdigestion biosolids temperature to below the maximum for fecal coliform growth, (4) an unknown effect of biosolids dewatering in centrifuges. At Hyperion Treatment Plant (City of Los Angeles, California), fecal coliform recurrence could be prevented by the following: (1) complete conversion to thermophilic operation to exclude contamination by mesophilically digested biosolids and (2) insulation and electrical heat-tracing of postdigestion train for maintaining a high biosolids temperature in postdigestion.  相似文献   

14.
Biosolids produced from pulp and paper mill wastewater treatment have excellent properties as soil conditioners, but often contain high levels of Escherichia coli. E. coli are commonly used as indicators of fecal contamination and health hazard; therefore, their presence in biosolids causes concern and has lead to restrictions in land-spreading. The objectives of this study were to determine the following: (1) if E. coli from the biosolids of a wastewater-free pulp and paper mill were enteric pathogens, and (2) if other waterborne microbial pathogens were present. E. coli were screened for heat-labile and heat-stable enterotoxin and verocytotoxin virulence genes using a polymerase chain reaction. Ten isolates were also screened for invasion-associated locus and invasion plasmid antigen H genes. None of the 120 isolates carried these genes. Tests for seven other microbial pathogens were negative. Effluents and biosolids from this mill do not contain common microbial pathogens and are unlikely to pose a health hazard.  相似文献   

15.
Sánchez L  Romero E  Peña A 《Chemosphere》2003,53(8):843-850
Packed columns were prepared with an agricultural soil to examine the ability of two organic soil modifiers, biosolid and the cationic surfactant tetradecyl trimethyl ammonium bromide (TDTMA), to alter the leaching of the insecticide methidathion. Ion chloride was used as a tracer of water flow and the mathematical model PESCOL was selected to predict the mobility of the insecticide. The biosolid addition (SB column) delayed the breakthrough curves for methidathion with respect to the non-amended soil (S) column. The cationic surfactant TDTMA, alone or combined with the biosolid (SS and SBS) and previously incorporated in the soil column, caused the highest retardation of this pesticide in the soil columns. Theoretical retardation factors (TRf) were similar to the experimental Rf values for the S and SB columns, and predicted the high retention observed in the SBS and SS columns. The simulation with PESCOL predicted the experimental results.  相似文献   

16.
The objectives of this research were to elucidate the mechanisms for production and degradation of volatile organic sulfur compounds (VOSCs), key odor causing compounds produced by biosolids. These compounds included methanethiol (MT), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS). A series of experiments were used to probe various pathways hypothesized to produce and degrade these VOSCs. The production of MT was found to mainly occur from degradation of methionine and the methylation of hydrogen sulfide. DMS was formed through the methylation of MT. DMDS was formed by MT oxidation. All three of the VOSCs were readily degraded by methanogens and a cyclic pathway was proposed to describe the production and degradation of VOSCs. The research demonstrated that the main source of VOSCs was the biodegradation of protein within the biosolids and the results provided a framework for understanding the production of odor from anaerobically digested sludges before and after dewatering.  相似文献   

17.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) along with methoxylated polybrominated diphenyl ethers (MeO-PBDEs) have been frequently identified as natural compounds in marine environment and also assumed as metabolites of PBDEs. In the present study, nine OH-PBDE, nine MeO-PBDE and 10 PBDE congeners were studied in the sewage sludge collected from 36 municipal wastewater treatment plants (WWTPs) in 27 cities of China. The results suggest that OH-PBDEs and PBDEs are ubiquitous in sewage sludge in China, however, methoxylated PBDEs were not detectable. Composition profiles of detected OH-PBDE congeners were different depending on the sampling location. ΣOH-PBDEs in WWTPs sludge ranged from 0.04 to 2.24 ng g?1 dry weight (mean: 0.35 ng g?1 dry weight). The total amount of the two most prominent congeners (6-OH-BDE-47 + 2′-OH-BDE-68) accounted for about 53.3–100% of the sum of all six identified congeners. A significant linear relationship was found between 6-OH-BDE-47 and 2′-OH-BDE-68. A distinct geographical distribution of ΣOH-PBDEs was observed with greater concentrations of OH-PBDEs at coastal areas than inland regions in China.  相似文献   

18.
This study examines the potential for environmental risks due to organic contaminants at sewage sludge application sites, and documents metals and various potential organic contaminants (volatile organics, chlorinated pesticides, PCBs, dioxins/furans, extractable petroleum hydrocarbons, PAHs, phenols, and others) in current production biosolids from five wastewater treatment plants (WWTPs) within the Greater Vancouver Regional District (GVRD). There has been greater focus in Europe, North America and elsewhere on metals accumulation in biosolids-amended soil than on organic substances, with the exception of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Another objective, therefore, was to evaluate the extent to which management of biosolids re-use based on metal/metalloid levels coincidentally minimizes environmental risks from organic contaminants. Historical-use contaminants such as chlorophenols, PCBs, and chlorinated pesticides were not detected at environmentally relevant concentrations in any of the 36 fresh biosolids samples, and appear to have virtually eliminated from sanitary collection system inputs. The few organic contaminants found in freshly produced biosolids samples that exhibited high concentrations relative to British Columbia and Canadian soil quality benchmarks included p-cresol, phenol, phenanthrene, pyrene, naphthalene, and heavy extractable petroleum hydrocarbons (HEPHs--nCl9-C34 effective carbon chain length). It was concluded that, with the exception of these petroleum hydrocarbon constituents or their microbial metabolites, the mixing of biosolids with uncontaminated soils during land application and based on the known metal concentrations in biosolids from the Greater Vancouver WWTPs investigated provides adequate protection against the environmental risks associated with organic substances such as dioxins and furans, phthalate esters, or volatile organics. Unlike many other organic contaminants, the concentrations of petroleum hydrocarbon derived substances in biosolids has not decreased within the last decade or more in the WWTPs studied, and--unlike persistent chlorinated compounds--the associated PAHs and other hydrocarbon constituents merit careful consideration, especially in the context of repeated land-application of biosolid.  相似文献   

19.
20.
Managers of human biosolids have been incorporating the practice of waste pelletization for use as fertilizer since the mid 1920s, and waste pelletization has recently been embraced by some poultry producers as a way to move nutrients away from saturated agricultural land. However, the presence of arsenic in pelletized poultry house waste (PPHW) resulting from the use of organoarsenical antimicrobial drugs in poultry production raises concerns regarding additional incremental population exposures. Arsenic concentrations were determined in PPHW and pelletized biosolids fertilizer (PBF) samples. Pellets were processed using strong acid microwave digestion and analyzed by graphite furnace atomic absorption spectroscopy. The mean arsenic concentration in PPHW (20.1 ppm) fell within the lower part of the range of previously report arsenic concentrations in unpelletized poultry house waste. Arsenic concentrations in PBF, the source of which is less clear than for PPHW, were approximately a factor of 5 times lower than those in PPHW, with a mean concentration of 4.1 ppm. The pelletization and sale of these biological waste fertilizers present new pathways of exposure to arsenic in consumer populations who would otherwise not come into contact with these wastes. Arsenic exposures in humans resulting from use of these fertilizer pellets should be quantified to avoid potential unintended negative consequences of managing wastes through pelletization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号