首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dominant nitrogen (N) fluxes were simulated in a mountain forest ecosystem on dolomitic bedrock in the Austrian Alps. Based on an existing small-scale climate model the simulation encompassed the present situation and a 50-yr projection. The investigated scenarios were current climate, current N deposition (SC1) and future climate (+2.5 degrees C and +10% annual precipitation) with three levels of N deposition (SC2, 3, 4). The microbially mediated N transformation, including the emission of nitrogen oxides, was calculated with PnET-N-DNDC. Soil hydrology was calculated with HYDRUS and was used to estimate the leaching of nitrate. The expected change of the forest ecosystem due to changes of the climate and the N availability was simulated with PICUS. The incentive for the project was the fact that forests on dolomitic limestone stock on shallow Rendzic Leptosols that are rich in soil organic matter are considered highly sensitive to the expected environmental changes. The simulation results showed a strong effect due to increased temperatures and to elevated levels of N deposition. The outflux of N, both as nitrate (6-25kg Nha(-1)yr(-1)) and nitrogen oxides (1-2kg Nha(-1)yr(-1)), from the forest ecosystem are expected to increase. Temperature exerts a stronger effect on the N(2)O emission than the increased rate of N deposition. The main part of the N emission will occur as N(2) (15kg Nha(-1)yr(-1)). The total N loss is partially offset by increased rates of N uptake in the biomass due to an increase in forest productivity.  相似文献   

2.
Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m−2) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N2O, CH4 and CO2 fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N2O fluxes were from 26% to 79% lower than N2O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N2O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH4 fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation.  相似文献   

3.
The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach. The last decade of rainwater studies substantially expands the worldwide dataset, giving enough global coverage for specific hypotheses to be considered about the distribution, composition, sources and effects of organic-nitrogen deposition. This data collation and meta-analysis highlights knowledge gaps, suggesting where data-gathering efforts and process studies should be focused. New analytical techniques allow long-standing conjectures about the nature and sources of organic N to be investigated, with tantalising indications of the interplay between natural and anthropogenic sources, and between the nitrogen and carbon cycles.  相似文献   

4.
Das S  Ghosh A  Adhya TK 《Chemosphere》2011,84(1):54-62
Combination of divergent active principles to achieve broad-spectrum control is gaining popularity to manage the weed menace in intensive agriculture. However, such application could have non-target impacts on the soil processes affecting soil ecology and environmental interactions. A field experiment was conducted to investigate the impact of separate and combined applications of herbicides bensulfuron methyl and pretilachlor on the emission of N2O and CH4, and related soil and microbial parameters in a flooded alluvial field planted to rice cv Lalat. Single application of the herbicide bensulfuron methyl or pretilachlor resulted in a significant reduction of N2O and CH4 emissions while the combination of these two herbicides distinctly increased N2O and CH4 emissions. Cumulative N2O emissions (kg N2O-N) followed the order of bensulfuron methyl (0.35 kg ha−1) < pretilachlor (0.36 kg ha−1) < control (0.45 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (0.49 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (0.54 kg ha−1). Cumulative CH4 emissions (kg CH4), on the other hand, followed the order of bensulfuron methyl (47.89 kg ha−1) < pretilachlor (73.17 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% single dose (93.50 kg ha−1) < control (106.54 kg ha−1) < bensulfuron methyl 0.6% + pretilachlor 6.0% double dose (124.67 kg ha−1). The inhibitory effect of separate application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% on N2O emission was linked to lower mineral N, lower denitrifying and nitrifying activity and low denitrifier and nitrifier populations. Inhibitory effect on CH4 emission, on the contrary, was linked to prevention in the drop of redox potential, lower readily mineralizable carbon (RMC) and microbial biomass carbon (MBC) contents as well as lower methanogenic and higher methanotrophic bacterial population. Admittedly, stimulatory effect of combined application of herbicides bensulfuron methyl 0.6% and pretilachlor 6.0% at double dose on N2O and CH4 emission was related to reversal of the identified indicators of inhibition. Results indicate that while individual application of herbicides bensulfuron methyl 0.6% or pretilachlor 6.0% can reduce N2O and CH4 emission from flooded soil planted to rice, their combined application at normal dose can keep the emission at a comparatively lower level with significantly higher grain yield as compared to the herbicides applied alone.  相似文献   

5.
There is increasing concern that agricultural intensification in China has greatly increased N2O emissions due to rapidly increased fertilizer use. By linking a spatial database of precipitation, synthetic fertilizer N input, cropping rotation and area via GIS, a precipitation-rectified emission factor of N2O for upland croplands and water regime-specific emission factors for irrigated rice paddies were adopted to estimate annual synthetic fertilizer N-induced direct N2O emissions (FIE-N2O) from Chinese croplands during 1980-2000. Annual FIE-N2O was estimated to be 115.7 Gg N2O-N year−1 in the 1980s and 210.5 Gg N2O-N year−1 in the 1990s, with an annual increasing rate of 9.14 Gg N2O-N year−1 over the period 1980-2000. Upland croplands contributed most to the national total of FIE-N2O, accounting for 79% in 1980 and 92% in 2000. Approximately 65% of the FIE-N2O emitted in eastern and southern central China.  相似文献   

6.
Nitrogen concentration and δ15N in 175 epilithic moss samples were investigated along four directions from urban to rural sites in Guiyang, SW China. The spatial variations of moss N concentration and δ15N revealed that atmospheric N deposition is dominated by NHx-N from two major sources (urban sewage NH3 and agricultural NH3), the deposition of urban-derived NHx followed a point source pattern characterized by an exponential decline with distance from the urban center, while the agricultural-derived NHx was shown to be a non-point source. The relationship between moss N concentration and distance (y = 1.5e−0.13x + 1.26) indicated that the maximum transporting distance of urban-derived NHx averaged 41 km from the urban center, and it could be determined from the relationship between moss δ15N and distance [y = 2.54 ln(x) − 12.227] that urban-derived NHx was proportionally lower than agricultural-derived NHx in N deposition at sites beyond 17.2 km from the urban center. Consequently, the variation of urban-derived NHx with distance from the urban center could be modeled as y = 56.272e−0.116x − 0.481 in the Guiyang area.  相似文献   

7.
An automated system for continuous measurement of N2O fluxes on an hourly basis was employed to study N2O emissions in an intensively managed low carbon calcareous soil under sub-humid temperate monsoon conditions. N2O emissions occurred mainly within two weeks of application of NH4+-based fertilizer and total N2O emissions in wheat (average 0.35 or 0.21 kg N ha−1 season−1) and maize (average 1.47 or 0.49 kg N ha−1 season−1) under conventional and optimum N fertilization (300 and 50-122 kg N ha−1, respectively) were lower than previously reported from low frequency measurements. Results from closed static chamber showed that N2O was produced mainly from nitrification of NH4+-based fertilizer, with little denitrification occurring due to limited readily oxidizable carbon and low soil moisture despite consistently high soil nitrate-N concentrations. Significant reductions in N2O emissions can be achieved by optimizing fertilizer N rates, using nitrification inhibitors, or changing from NH4+- to NO3ˉ-based fertilizers.  相似文献   

8.
  总被引:1,自引:0,他引:1  
This study presents the field investigations into the effects of cover soils and leachate subsurface irrigation on N2O emissions from municipal solid waste landfills. Landfill Site A and Site B, covered with carefully chosen infertile soils, were selected to monitor their diurnal and seasonal variations of N2O emissions. The annual average N2O flux was 469 ± 796 μg N2O-N m−2 h−1 in Site B with leachate subsurface irrigation, three times that of Site A without leachate irrigation. When an additional soil containing lower contents of carbon and nitrogen was introduced to cover part of Site B, its N2O fluxes decreased by 1-2 orders of magnitude compared with the left area of Site B. This suggested that carefully selected cover soils could substantially reduce N2O emissions even under leachate subsurface irrigation. Statistical analysis proved that the availabilities of soil moisture and mineralized nitrogen were the key parameters controlling landfill N2O emissions.  相似文献   

9.
We investigate the possibility to replace the – so-called – Tier 1 IPCC approach to estimate soil N2O emissions with stratified emissions factors that take into account both N-input and the spatial variability of the environmental conditions within the countries of the European Union, using the DNDC-Europe model. Spatial variability in model simulations is high and corresponds to the variability reported in literature for field data. Our results indicate that (a) much of the observed variability in N2O fluxes reflects the response of soils to external conditions, (b) it is likely that national inventories tend to overestimate the uncertainties in their estimated direct N2O emissions from arable soils; (c) on average over Europe, the fertilizer-induced emissions (FIE) coincide with the IPCC factors, but they display large spatial variations. Therefore, at scales of individual countries or smaller, a stratified approach considering fertilizer type, soil characteristics and climatic parameters is preferable.  相似文献   

10.
Absorption spectroscopy, which is widely used for concentration measurements of tropospheric and stratospheric compounds, requires precise values of the absorption cross-sections of the measured species. NO2, O2 and its collision-induced absorption spectrum, and H2O absorption cross-sections have been measured at temperature and pressure conditions prevailing in the Earth’s atmosphere. Corrections to the generally accepted analysis procedures used to resolve the convolution problem are also proposed.  相似文献   

11.
Thioarsenate formation upon dissolution of orpiment and arsenopyrite   总被引:5,自引:0,他引:5  
Thioarsenates were previously determined as dominant species in geothermal and mineral waters with excess sulfide. Here, we used batch leaching experiments to determine their formation upon weathering or industrial leaching of the arsenic-sulfide minerals orpiment (As2S3) and arsenopyrite (FeAsS) under different pH and oxygen conditions. Under acidic conditions, as expected based on their known kinetic instability at low pH, no thioarsenates formed in either of the two mineral systems. Under neutral to alkaline conditions, orpiment dissolution yielded mono-, di- and trithioarsenate which accounted for up to 43-55% of total arsenic. Thioarsenate formation upon arsenopyrite dissolution was low at neutral (4%) but significant at alkaline pH, especially under suboxic to sulfidic conditions (20-43%, mainly as monothioarsenate). In contrast to orpiment, we postulate that recombination of arsenite and sulfide in solution is of minor importance for monothioarsenate formation during alkaline arsenopyrite dissolution. We propose instead that hydroxyl physisorption lead to formation of As-OH-S surface complexes by transposition of hydroxyl anions to arsenic or iron sites. Concurrently formed ironhydroxides could provide re-sorption sites for the freshly released monothioarsenate. However, sorption experiments with goethite showed slower sorption kinetics of monothioarsenate compared to arsenite, but comparable with arsenate. The discovery that thioarsenates are released by natural weathering and industrial leaching processes and that, once they are released, have a higher mobility than the commonly-investigated species arsenite and arsenate requires future studies to consider them when assessing arsenic release in sulfidic natural or mining-impacted environments.  相似文献   

12.
采用浸渍-热分解法制备了含IrOx-TiO2中间层的IrO2-SnO2电极,得到的电极具有较高的析氯电催化活性和较强的稳定性,并通过电化学氧化法对Na2SO3海水脱硫模拟液进行处理,考察了电流密度、温度、pH值和电解时间等电解工艺参数对Na2SO3去除率和化学需氧量COD的影响.结果表明,在电流密度为200 mA/cm...  相似文献   

13.
While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NHx and NOy) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NHx:NOy ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH4+ concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NHx:NOy deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems.  相似文献   

14.
电解锰渣中锰的浸出条件及特征   总被引:1,自引:1,他引:1       下载免费PDF全文
采用水洗-酸解法回收电解锰渣中锰,探讨了清水量、酸量以及温度在不同阶段对锰浸(洗)出条件的影响,分析了回收锰的主要因素及浸出特征。实验结果表明,50 g电解锰渣经m渣∶m水=1∶10的清水水洗后,采用10%的硫酸在70℃的水浴温度下酸解2 h,Mn2+浸出量为1.673 g,回收率达到97.3%,而温度和酸度对锰离子的浸出影响明显,酸度调控可有效分离酸浸锰液中金属成分,为减少电解锰渣环境污染的同时,实现电解锰渣资源化利用。  相似文献   

15.
Modelling complex systems such as farms often requires quantification of a large number of input factors. Sensitivity analyses are useful to reduce the number of input factors that are required to be measured or estimated accurately. Three methods of sensitivity analysis (the Morris method, the rank regression and correlation method and the Extended Fourier Amplitude Sensitivity Test method) were compared in the case of the CERES-EGC model applied to crops of a dairy farm. The qualitative Morris method provided a screening of the input factors. The two other quantitative methods were used to investigate more thoroughly the effects of input factors on output variables. Despite differences in terms of concepts and assumptions, the three methods provided similar results. Among the 44 factors under study, N2O emissions were mainly sensitive to the fraction of N2O emitted during denitrification, the maximum rate of nitrification, the soil bulk density and the cropland area.  相似文献   

16.
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993–2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites.Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999–2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for wetfall, snowpack, and snow-telemetry data for the central and southern rockies subregions (p<0.03), while no trends were noted for the Northern Rockies subregion.  相似文献   

17.
Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America’s maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha−1 y−1 in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs.  相似文献   

18.
微波辅助双氧水氧化降解水中磺胺二甲嘧啶   总被引:1,自引:0,他引:1       下载免费PDF全文
赵方  张从良  王岩 《环境工程学报》2012,6(11):4074-4078
采用微波辐照技术辅助双氧水氧化降解水中磺胺二甲嘧啶(SM2),研究了微波辅助双氧水氧化降解水中SM2的影响因素。结果表明,单纯使用微波辐照并不能显著降解SM2,而微波辐照可显著促进双氧水对SM2的氧化作用,提高SM2的降解率。在初始浓度为50 mg/L,微波功率为900 W,加入0.25 mL质量分数为30%的双氧水,pH值为4的条件下辐照6 min,SM2的降解率可达96.5%,COD去除率为72%。  相似文献   

19.
以钛酸丁酯为前驱物、无水乙醇作溶剂、二乙醇胺作为抑制剂,采用溶胶凝胶法制备TiO2溶胶,在NN3气流中直接进行热处理,制备一系列不同焙烧温度的淡黄色的掺氮纳米TiO2粉体。经XRD、UV-Vis和FTIR分析表明,实验制得的TiO2-xNx在350、400、450、500和550℃热处理3 h后仍为锐钛型;450℃保温3 h掺氮样品具有最佳的紫外-可见光响应,其吸收边红移至720 nm左右。罗丹明B的可见光降解实验及产物分析表明,掺氮样品具有良好的可见光催化活性。  相似文献   

20.
为了有效地改善养猪场污水的质量,以H2O2为药剂,对污水进行了水浴加热和超声波辅助的对比实验,考察了超声波发生器输出端电流强度、处理时间、H2O2用量对污水的COD、氨气及颜色的影响,并进行正交实验优化。结果表明,超声波协同H2O2处理养殖污水是一种切实可行的方法,超声波协同H2O2处理污水的最佳工艺条件:电流0.7 A、处理时间2 min、H2O2用量3%,在此条件下降低COD量可达95%以上,氨氮的含量可降至14~15 mg/L,氨臭味大大得到了改善,并将原污水由黑色变为浅黄色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号