首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Leaching behaviour of hazardous demolition waste   总被引:1,自引:1,他引:0  
Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases.  相似文献   

2.
Mechanical-biological treatment of municipal solid waste has become popular throughout the UK and other parts of Europe to enable compliance with the Landfill Directive. Pretreatment will have a major influence on the degradation and settlement characteristics of the waste in landfills owing to the changes in the composition and properties of the wastes. This paper presents and compares the results of long term landfill behaviour of the UK and German MBT wastes pretreated to different standards. The gas generating potential, leachate quality and settlement characteristics are highlighted. The results reveal that it is possible to achieve stabilisation of MBT waste within a year and the biogas yield and leachate strength of German MBT waste was significantly reduced compared with the UK MBT waste. The settlement resulting from mechanical creep is more significant than the biodegradation induced settlement in both cases.  相似文献   

3.
By mechanical-biological treatment (MBT) of residual municipal solid waste the behaviour of landfills can be significantly improved. After MBT the organic content (COD and BOD5), total organic carbon, and total nitrogen in the leachate, as well as the gas production rate, are reduced to values lower than 90% of the fresh untreated waste. The volume of the stabilized material to be disposed on landfills decreases enormously, by up to 70%. The monitoring effort for a landfill constructed under these conditions is reduced to a minimum and the stabilized material can be used in other ways, as material for reforestation, for cover material or for thermal utilization to produce energy. Environmental conditions are important in MBT, as well as waste characteristics. This paper describes the results of a pilot project of MBT performed in Rio de Janeiro, Brazil. The results have shown that this technology can be used successfully in developing countries, with economy for the society and important results for the environment.  相似文献   

4.
Landfilling is a fundamental step in any waste management strategy, but it can constitute a hazard for the environment for a long time. The need to protect the environment from potential landfill emissions makes risk assessment a decision tool of extreme necessity. The heterogeneity of wastes and the complexity of physical, chemical and biological processes that occur in the body of a landfill need specific procedures in order to evaluate the groundwater risk for the environment. Given the complexity of the composition of landfill leachates, the exact contribution of each potential toxic substance cannot be known precisely. Some reference contaminants that constitute the hazard (toxicity) of leachate have to be found to perform the risk assessment. A preliminary ecotoxicological investigation with luminescent bacteria has been carried out on different leachates from traditional and sustainable landfills in order to rank the chemicals that better characterize the leachate (heavy metals, ammonia and dissolved organic content). The attention has been focused on ammonia because it is present in high concentration and can last for centuries and can seriously contaminate the groundwater. The results showed that the toxicity of the leachate might reliably depend on the ammonia concentration and that the leachate toxicity is considerably lower in sustainable landfills where the ammonia had been degraded. This has an important consequence because if the containment system fails (as usually occur within 30-50yr), the risk of groundwater contamination will be calculated easier only in terms of the probability that the ammonia concentration is higher than a reference concentration.  相似文献   

5.
Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated.For waste treated to the required German standards, a methane formation potential of approximately 18–24 m3 CH4/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected.Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH4/(m2 h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated.Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO2-eq./a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.  相似文献   

6.
During the past 15 years considerable research has taken place in the U.K. to investigate the decomposition processes occurring within municipal waste landfills. This, in turn, has led to a better understanding of the environmental fate of many industrial wastes currently, or formerly, co-disposed with municipal refuse. Codisposal is defined in this paper as the disposal of chemical wastes in an admixture with domestic waste so that full advantage is taken of the attenuation and biochemical processes operating within a landfill to reduce the environmental impact to an insignificant level. Central to this philosophy is the maintenance of a balanced input of different wastes to ensure that attenuation and degradation processes are not overwhelmed. It is contended that co-disposal is an effective disposal option for a wide range of industrial wastes at correctly sited and well managed landfills.Co-disposal research findings for three selected industrial waste types are presented and related to the scientific basis for the prohibition, or continuation of their disposal to landfills.  相似文献   

7.
Demolition wastes may be used in different civil engineering applications as road constructions, concrete, and embankments or landfill. Regardless its application, leaching tests of the waste should be carried out to assess concentrations of pollutants. Concrete, brick and mixture of concrete, bricks, tiles and ceramics wastes were subject to percolation test—CEN/TS 14405, and batch test—SR EN 12457. The leachates were analyzed with respect to concentration of inorganic elements—arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, selenium, zinc, fluoride, chloride and sulfate, and organic compounds (phenol index). The concentrations of elements in leachates were compared with the limit values of European regulation for the acceptance of inert wastes at landfills. Generally, the releases of inorganic species in leachates were below limits values. Some waste leachates obtained by percolation and batch test had high values for phenol index.  相似文献   

8.
Boron has been found in high concentrations in leachates from landfills located throughout Japan. However, the source(s) of boron in the leachates, i.e., what kind of waste(s) releases this element into the leachate, has not been clarified. In this study, boron concentrations in leachates from 48 industrial landfills were evaluated, in relation to the categories of waste constituting the landfill in each of the sites, by multiple regression analysis. The multiple regression analyses were carried out using the log-transformed boron concentration as a dependent variable and each of 19 categories of industrial waste (according to the Japanese Waste Disposal and Public Cleansing Law) as independent variables. Stepwise variable selection was employed in the analyses. Although the significant variable(s) selected varied according to the data sets analyzed (viz., data sets from least controlled landfill sites, from controlled landfill sites, and from both), cinders, slag, and waste plastics emerged as wastes with positive partial regression coefficients that significantly explained the boron levels in the leachates. These results indicated that cinders, slag, and waste plastics were the sources of high concentrations of boron in the leachates. The results of the present exploratory statistical analyses warrant a systematic survey of the boron contents of, and leachability from, cinders, slag, and waste plastics. Received: January 17, 2000 / Accepted: July 24, 2000  相似文献   

9.
Mechanical–biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratory experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ~320 g/kg dry matter for raw MSW to between 183 and 195 g/kg dry matter for the MBT wastes.  相似文献   

10.
Leachates from municipal solid waste (MSW) landfills may contain a huge diversity of contaminants; these wastewaters should be considered as potentially hazardous complex mixtures, representing a potential environmental risk for surface and groundwater. Current MSW landfill wastes regulatory approaches deem exclusively on the physicochemical characterization and does not contemplate the ecotoxicological assessment of landfill leachates. However, the presence of highly toxic substances in consumer products requires reconsideration on the need of more specific ecotoxicological assessments. The main aim of this study was to evaluate the toxicity of different MSW landfill leachates using a battery of toxicity tests including acute toxicity tests with Daphnia magna and the anuran Xenopus laevis and the in vitro toxicity test with the fish cell line RTG-2. The additional objective was to study the possible correlation between physicochemical properties and the toxicity results obtained for untreated landfill leachates. The results showed that the proposed test battery was effective for the ecotoxicological characterization of MSW landfill leachates. A moderate to strong correlation between the measured physicochemical parameters and the calculated toxicity units was detected for all toxicity assays. Correlation factors of 0.85, 0.86 and 0.55 for Daphnia, Xenopus and RTG-2 tests, respectively, were found. The discriminant analysis showed that certain physicochemical parameters could be used for an initial categorization of the potential aquatic acute toxicity of leachates; this finding may facilitate leachates management as the physicochemical characterization is currently the most common or even only monitoring method employed in a large majority of landfills. Ammonia, alkalinity and chemical oxygen demand (COD), together with chloride, allowed a proper categorization of leachates toxicity for up to 75% of tested samples, with a small percentage of false negatives.  相似文献   

11.
In today’s context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON–ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.  相似文献   

12.
In situ ammonia removal in bioreactor landfill leachate   总被引:11,自引:0,他引:11  
Although bioreactor landfills have many advantages associated with them, challenges remain, including the persistence of NH(3)-N in the leachate. Because NH(3)-N is both persistent and toxic, it will likely influence when the landfill is biologically stable and when post-closure monitoring may end. An in situ nitrogen removal technique would be advantageous. Recent studies have shown the efficacy of such processes; however, they are lacking the data required to enable adequate implementation at field-scale bioreactor landfills. Research was conducted to evaluate the kinetics of in situ ammonia removal in both acclimated and unacclimated wastes to aid in developing guidance for field-scale implementation. Results demonstrate that in situ nitrification is feasible in an aerated solid waste environment and that the potential for simultaneous nitrification and denitrification (even under low biodegradable C:N conditions) in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. All rate data fit well to Monod kinetics, with specific rates of removal of 0.196 and 0.117 mgN/day-g dry waste and half-saturation constants of 59.6 and 147 mgN/L for acclimated and unacclimated wastes, respectively. Although specific rates of ammonia removal in the unacclimated waste are lower than in the acclimated waste, a relatively quick start-up of ammonia removal was observed in the unacclimated waste. Using the removal rate expressions developed will allow for estimation of the treatment times and volumes necessary to remove NH(3)-N from recirculated landfill leachate.  相似文献   

13.
Deposit formation in leachate collection systems can be problematic for landfill operations. Deposits from municipal solid waste (MSW) derived leachates are impacted by microbial activity and biofilm development, whereas leachates generated from co-disposal of MSW with combustion residues (CR) from waste-to-energy (WTE) facilities and other mineral-rich waste materials are more prone to forming dense mineral deposits dominated by calcium carbonate. In this study, leachates from laboratory lysimeters containing either WTE-CR or shredded MSW were mixed at different volumetric ratios. The mixed leachates were incubated for 5 weeks in batch tests to evaluate the potential for formation of precipitates. Although mineral precipitates have been reported to form in landfills with no co-disposal practices, in this study mineral precipitates did not form in either the WTE-CR derived leachate or the MSW derived leachate, but formed in all leachate mixtures. Mineral precipitates consisted of calcium carbonate particles, with the highest yield from a 1:1 combination of the WTE-CR derived leachate mixed with the MSW derived leachate. The introduction of gaseous carbon dioxide or air into WTE-CR derived leachate resulted in the production of particles of similar chemical composition but different morphology. Operation of landfills to prevent co-mingling of mineral-rich leachates with microbially active leachates and/or to control leachate exposure to sources of carbon dioxide may help to prevent this type of precipitate formation in leachate collection systems.  相似文献   

14.
The interaction of parameters determining the potential emissions of two different mechanically-biologically pretreated municipal solid wastes (MBT wastes) is elucidated in this work. The origins of the wastes are Germany and Sweden. By means of lab-scale experiments, increased stabilisation through composting is preferably determined by a decrease in respiration activity. Concurrently, the stabilisation is verified for the leachates by a decrease in COD, DOC, and BOD(5). Total organic carbon content reflects stabilisation less accurately. FT-IR and thermal analytical methods add valuable information about the state of degradation, especially when several distinct thermal parameters are taken into account. Mobility of Cr, Ni, Pb, and Zn produced by a batch leaching test with deionized water is reduced by the pretreatment of both materials. Mobility of copper unambiguously increased. A principle component analysis (PCA) of membrane fractionated leachates indicates an affinity of Cu to mobile humic acids or dissolved organic carbon. High Cr, Zn, and Ni contents in the solid co-occur with high contents of solid humic acids. To a lesser extent, this is also true for solid Cd, Cu, and Pb contents. Due to differences in required landfilling conditions, actual emissions and after-care phase length will depend on whether each waste is landfilled in Germany or Sweden.  相似文献   

15.
The residual fraction of mechanically-biologically treated municipal solid waste (MBT residual) was studied in the laboratory to evaluate its suitability and environmental compatibility as a support medium in methane (CH(4)) oxidative biocovers for the mitigation of greenhouse gas emissions from landfills. Two MBT residuals with 5 and 12 months total (aerobic) biological stabilisation times were used in the study. MBT residual appeared to be a favourable medium for CH(4) oxidation as indicated by its area-based CH(4) oxidation rates (12.2-82.3 g CH(4) m(-2) d(-1) at 2-25 degrees C; determined in CH(4)-sparged columns). The CH(4) oxidation potential (determined in batch assays) of the MBT residuals increased during the 124 d column experiment, from <1.6 to a maximum of 104 microg CH(4) g(dw)(-1) h(-1) (dw=dry weight) at 5 degrees C and 578 microg CH(4) g(dw)(-1) h(-1) at 23 degrees C. Nitrous oxide (N(2)O) production in MBT residual (<15 microg N(2)O kg(dw)(-1) d(-1) in the CH(4) oxidative columns) was at the lower end of the range of N(2)O emissions reported for landfills and non-landfill soils, and insignificant as a greenhouse gas source. Also, anaerobic gas production (25.6 l kg(dw)(-1) during 217 d) in batch assays was low, indicating biological stability of the MBT residual. The electrical conductivities (140-250 mS m(-1)), as well as the concentrations of zinc (3.0 mg l(-1)), copper (0.5 mg l(-1)), arsenic (0.3 mg l(-1)), nickel (0.1 mg l(-1)) and lead (0.1 mg l(-1)) in MBT residual eluates from a leaching test (EN-12457-4) with a liquid/solid (L/S) ratio of 10:1, suggest a potential for leachate pollutant emissions which should be considered in plans to utilise MBT residual. In conclusion, the laboratory experiments suggest that MBT residual can be utilised as a support medium for CH(4) oxidation, even at low temperatures, to mitigate greenhouse gas emissions from landfills.  相似文献   

16.
This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.  相似文献   

17.
This article discusses the appropriateness of using landfills as part of remediating hazardous chemical and Superfund sites, with particular emphasis on providing for true long‐term public health and environmental protection from the wastes and contaminated soils that are placed in the landfills. On‐site landfilling or capping of existing wastes is typically the least expensive approach for gaining some remediation of existing hazardous chemical/Superfund sites. The issues of the deficiencies in US EPA and state landfilling approaches discussed herein are also applicable to the landfilling of municipal and industrial solid “nonhazardous” wastes. These deficiencies were presented in part as “Problems with Landfills for Superfund Site Remediation” at the US EPA National Superfund Technical Assistance Grant Workshop held in Albuquerque, New Mexico, in February 2003. They are based on the author's experience in investigating the properties of landfill liners and the characteristics of today's landfills, relative to their ability to prevent groundwater pollution and to cause other environmental impacts. Discussed are issues related to both solid and hazardous waste landfills and approaches for improving the ability of landfills to contain wastes and monitor for leachate escape from the landfill for as long as the wastes in the landfill will be a threat. © 2004 Wiley Periodicals, Inc.  相似文献   

18.
This study compared the environmental impacts of composting yard wastes in windrows with using them in place of soil as alternative daily cover (ADC) in landfills. The Life Cycle Assessment was made using the SimaPro LCA software and showed that the ADC scenario is more beneficial for the environment than windrow composting. ADC use is also a less costly means of disposal of yard wastes. This finding applies only in cases where there are sanitary landfills in the area that are equipped with gas collection systems and can use yard wastes as alternative daily cover. Otherwise, the environmentally preferable method for disposal of source-separated yard wastes is composting rather than landfilling.  相似文献   

19.
Landfills at various stages of development, depending on their age and location, can be found throughout Europe. The type of facilities goes from uncontrolled dumpsites to highly engineered facilities with leachate and gas management. In addition, some landfills are designed to receive untreated waste, while others can receive incineration residues (MSWI) or residues after mechanical biological treatment (MBT). Dimension, type and duration of the emissions from landfills depend on the quality of the disposed waste, the technical design, and the location of the landfill. Environmental impacts are produced by the leachate (heavy metals, organic loading), emissions into the air (CH(4), hydrocarbons, halogenated hydrocarbons) and from the energy or fuel requirements for the operation of the landfill (SO(2) and NO(x) from the production of electricity from fossil fuels). To include landfilling in an life-cycle assessment (LCA) approach entails several methodological questions (multi-input process, site-specific influence, time dependency). Additionally, no experiences are available with regard to mid-term behaviour (decades) for the relatively new types of landfill (MBT landfill, landfill for residues from MSWI). The present paper focuses on two main issues concerning modelling of landfills in LCA: Firstly, it is an acknowledged fact that emissions from landfills may prevail for a very long time, often thousands of years or longer. The choice of time frame in the LCA of landfilling may therefore clearly affect the results. Secondly, the reliability of results obtained through a life-cycle assessment depends on the availability and quality of Life Cycle Inventory (LCI) data. Therefore the choice of the general approach, using multi-input inventory tool versus empirical results, may also influence the results. In this paper the different approaches concerning time horizon and LCI will be introduced and discussed. In the application of empirical results, the presence of data gaps may limit the inclusion of several impact categories and therefore affect the results obtained by the study. For this reason, every effort has been made to provide high-quality empirical LCI data for landfills in Central Europe.  相似文献   

20.
The management of electronic waste (e-waste) is a serious problem worldwide and much of it is landfilled. A survey of four selected landfills in an arid region of South Australia was conducted to determine the proportion of e-waste in municipal waste and the properties of each landfill site. Leachate and groundwater samples were collected upgradient and downgradient of the landfills for analysis of polybrominated diphenyl ethers (PBDEs) and 14 metals and metalloids, including Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Ni, Pb, Sb, V and Zn. Our data demonstrate that the selected landfills in South Australia continue to receive municipal waste containing in excess of 6%, or 25,000 tonnes per year, of e-waste. The leachates and groundwater collected from the landfills contained significantly elevated concentrations of Pb with the highest concentration in groundwater of 38 μg/l, almost four times higher than the Australian drinking water guideline of 10 μg/l. The presence of PBDEs was detected in both leachate and groundwater samples. Total PBDEs values of 2.13–59.75 ng/l in leachate samples were 10 times higher than in groundwater samples, which recorded a range of 0.41–6.53 ng/l at all sites. Moreover, the concentrations of metals and metalloids in sampled groundwater contained elevated levels of Al, As, Fe, Ni and Pb that exceeded Australian drinking water guideline values. For these reasons potential leaching of these contaminants is of concern and while difficult to attribute elevated contaminant levels to e-waste, we do not recommend continued disposal of e-waste in old landfills that were not originally designed to contain leachates. The survey also revealed temporal variation in the electrical conductivity and concentrations of As, Cd and Pb present in leachates of landfills in arid Mediterranean climates. These results are consistent with the marked variations in rainfall patterns observed for such climates. The solute concentration (EC and other ions including As, Cd and Pb) declines in the leachates during wet winter months (June to September), in contrast to tropical countries where such changes are observed during wet summer months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号