首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Foodborne viruses are a common and, probably, the most under-recognized cause of outbreaks of gastroenteritis. Among the main foods involved in the transmission of human enteric viruses are mollusks, and fruits and vegetables irrigated with wastewater and/or washed with non-potable water or contaminated by contact with surfaces or hands of the infected personnel during its preparation. In this study, 134 food samples were analyzed for the detection of Norovirus, Rotavirus, and Hepatitis A virus (HAV) by amplification of conserved regions of these viruses. From the 134 analyzed samples, 14 were positive for HAV, 6 for Norovirus, and 11 for Rotavirus. This is the first report in Mexico where emphasis is given to the presence of HAV and Norovirus on perishable foods and food from fisheries, as well as Rotavirus on frozen vegetables, confirming the role of vegetables and bivalve mollusks as transmitting vehicles of enteric viruses.  相似文献   

3.
4.
渤海湾天津沿岸海水中甲肝病毒的检测和定量   总被引:2,自引:0,他引:2  
张明露  杨健  赵宏  朱琳  赵化冰  蔡宝立 《环境科学》2009,30(6):1608-1613
甲肝病毒(hepatitis A virus, HAV)是能引起传染性甲型肝炎的单链RNA病毒.用常规RT-PCR(反转录PCR)和SYBR Green实时定量RT-PCR方法,根据甲肝病毒保守的VP1-VP2基因序列设计引物,对渤海湾天津沿岸海水中的甲肝病毒进行了检测和定量分析. 9个样品取自渤海湾天津塘沽以南沿岸海水,取样时间分别是2007年夏、秋、冬季和2008年春季. 海水样品先用小型超滤装置(Millipore Pellicon Mini TFF)或超滤离心管(Millipore Centricon Plus-70)浓缩,然后进行RT-PCR检测.结果表明,从9个海水样品中都能扩增出192 bp的HAV cDNA,这些cDNA的核苷酸序列与GenBank中的同源序列相似性为95%~100%. 用SYBR Green 实时定量RT-PCR检测了春季和冬季的6个海水样品,结果表明,海水中甲肝病毒的浓度范围为5.35×106~4.51×107 virus particles/L.  相似文献   

5.
环境水体中肠道病毒的膜吸附-洗脱浓缩方法研究   总被引:3,自引:0,他引:3  
在膜吸附-洗脱和洗脱液浓缩相结合的基础上,建立了一种简便实用的水中肠道病毒浓缩方法.通过实时定量RT-PCR检测,比较了不同材料和不同孔径的微孔滤膜对病毒的吸附效果;对膜洗脱方式进行了改进;研究了在洗脱液浓缩过程中,PEG浓度对于病毒回收率的影响.最后确定了最佳的浓缩方法.选择效果好而且来源广泛的0.22 μm孔径的混合纤维素酯微孔滤膜,采用磁力搅拌来洗脱滤膜上吸附的病毒;洗脱液浓缩步骤中,PEG最佳质量浓度为130 g/L.系统比较了不同病毒接种量下,方法中各步骤的病毒回收率.对接种已知量的肠道病毒的生活污水、二级处理出水和地表水等样品的试验结果表明,该方法效果稳定,适合不同水样中肠道病毒的浓缩分离.  相似文献   

6.
Numerous outbreaks have been attributed to the consumption of raw or minimally processed leafy green vegetables contaminated with enteric viral pathogens. The aim of the present study was an integrated virological monitoring of the salad vegetables supply chain in Europe, from production, processing and point-of-sale. Samples were collected and analysed in Greece, Serbia and Poland, from ??general?? and ??ad hoc?? sampling points, which were perceived as critical points for virus contamination. General sampling points were identified through the analysis of background information questionnaires based on HACCP audit principles, and they were sampled during each sampling occasion where as-ad hoc sampling points were identified during food safety fact-finding visits and samples were only collected during the fact-finding visits. Human (hAdV) and porcine (pAdV) adenovirus, hepatitis A (HAV) and E (HEV) virus, norovirus GI and GII (NoV) and bovine polyomavirus (bPyV) were detected by means of real-time (RT-) PCR-based protocols. General samples were positive for hAdV, pAdV, HAV, HEV, NoV GI, NoV GII and bPyV at 20.09?% (134/667), 5.53?% (13/235), 1.32?% (4/304), 3.42?% (5/146), 2?% (6/299), 2.95?% (8/271) and 0.82?% (2/245), respectively. Ad hoc samples were positive for hAdV, pAdV, bPyV and NoV GI at 9?% (3/33), 9?% (2/22), 4.54?% (1/22) and 7.14?% (1/14), respectively. These results demonstrate the existence of viral contamination routes from human and animal sources to the salad vegetable supply chain and more specifically indicate the potential for public health risks due to the virus contamination of leafy green vegetables at primary production.  相似文献   

7.
Hepatitis A virus (HAV) is currently recognized as an important human food borne pathogen, and it is one of the most resistant enteric RNA viruses, is highly infectious, and may lead to widespread outbreaks. The aim of this study was to optimize the methods to detect HAV from artificially contaminated food. To this end, strawberry and lettuce were experimentally contaminated with HAV suspension containing 6 × 106 copies/ml. After contamination, HAV persistence and washing procedure were evaluated at 0, 1, 3, 7, and 9 days of storage. Five elution buffers (PBS (pH 7.4)/0.1% Tween80; 50 mM glycine/3% (wt/vol) beef extract (pH 9.5); PBS (pH 7, 4); 25 mM glycine/0.1 Tween80; and 1 M sodium bicarbonate) were used to elute the virus, and qualitative and quantitative PCR were used for HAV detection. HAV was detected by qualitative and quantitative PCR using any of the five elution buffers, but PBS was the most effective. Even after washing, HAV was detected up to 9 days after contamination by quantitative PCR. Quantitative PCR was more sensitive than qualitative PCR since samples containing viral load lower than 1.4 × 103 copies/ml could not be detected by qualitative PCR. Quantitative PCR can be used for rapid detection of food borne viruses and will help in the monitoring and control of food borne disease.  相似文献   

8.
9.
Detection of norovirus (NoV) and hepatitis A virus (HAV) on fruits and vegetables using current standard methodologies can be inefficient. Method optimisat  相似文献   

10.
The evaluation of virus reduction in water reclamation processes is essential for proper assessment and management of the risk of infection by enteric viruses. Ultrafiltration (UF) with coagulation–sedimentation (CS) is potentially effective for efficient virus removal. However, its performance at removing indigenous viruses has not been evaluated. In this study, we evaluated the reduction of indigenous viruses by UF with and without CS in a pilot-scale water reclamation plant in Okinawa, Japan, by measuring the concentration of viruses using the real-time polymerase chain reaction (qPCR). Aichi virus (AiV) and pepper mild mottle virus (PMMoV) were targeted in addition to the main enteric viruses of concern for risk management, namely, norovirus (NoV) genogroups I and II (GI and GII) and rotavirus (RoV). PMMoV, which is a plant pathogenic virus and is present at high concentrations in water contaminated by human feces, has been suggested as a useful viral indicator. We also investigated the reduction of a spiked model virus (F-specific RNA bacteriophage MS2) to measure the effect of viral inactivation by both qPCR and plaque assay. Efficiencies of removal of NoV GI, NoV GII, RoV, and AiV by UF with and without CS were >0.5 to 3.7 log10, although concentrations were below the detection limit in permeate water. PMMoV was the most prevalent virus in both feed and permeate water following UF, but CS pretreatment could not significantly improve its removal efficiency (mean removal efficiency: UF, 3.1 log10; CS + UF, 3.4 log10; t test, P > 0.05). CS increased the mean removal efficiency of spiked MS2 by only 0.3 log10 by qPCR (t-test, P > 0.05), but by 2.8 log10 by plaque assay (t-test, P < 0.01). This difference indicates that the virus was inactivated during CS + UF. Our results suggest that PMMoV could be used as an indicator of removal efficiency in water reclamation processes, but cultural assay is essential to understanding viral fate.  相似文献   

11.
Shellfish are an important cause of foodborne viral illness. Consumer-friendly cooking recommendations for shellfish could improve food safety and decrease the risk for infection from contaminated products. Thermal inactivation parameters were established for hepatitis A virus (HAV) in mussels and validated with cooking experiments. Steaming for only 2–5 min was not sufficient to inactivate HAV in mussels in all layers of a steamer. Steaming mussels for 6 min was sufficient to inactivate HAV in all layers. These cooking guidelines produce shellfish with a reduced risk for foodborne virus transmission.  相似文献   

12.
In this study, we investigated the presence of enteric viruses such as norovirus (NoV), hepatitis A virus (HAV), hepatitis E virus (HEV), and adenovirus (HAdV), in vegetables available on the Italian markets. For this aim, 110 national and international ??ready to eat?? samples were collected and analyzed by biomolecular tests and positive samples were confirmed by sequencing. All samples (100?%) were negative for HAV, HEV, and HAdV, while 13.6?% (15/110) were positive for NoV. Actually there is not a formal surveillance system for NoV infections in Italy but we clearly demonstrated a potential risk associated with the consumption of ??ready to eat?? vegetables. This study confirmed for the first time in Italy the presence of norovirus in semi-dried tomatoes by PCR technique.  相似文献   

13.
Noroviruses (NoVs), currently recognised as the most common human food-borne pathogens, are ubiquitous in the environment and can be transmitted to humans through multiple foodstuffs. In this study, we evaluated the prevalence of human NoV genogroups I (GI) and II (GII) in 493 food samples including soft red fruits (n = 200), salad vegetables (n = 210) and bivalve mollusc shellfish (n = 83), using the Bovine Enterovirus type 1 as process extraction control for the first time. Viral extractions were performed by elution concentration and genome detection by TaqMan Real-Time RT-PCR (RT-qPCR). Experimental contamination using hepatitis A virus (HAV) was used to determine the limit of detection (LOD) of the extraction methods. Positive detections were obtained from 2 g of digestive tissues of oysters or mussels kept for 16 h in seawater containing 2.0–2.7 log10 plaque-forming units (PFU)/L of HAV. For lettuces and raspberries, the LOD was, respectively, estimated at 2.2 and 2.9 log10 PFU per 25 g. Of the molluscs tested, 8.4 and 14.4 % were, respectively, positive for the presence of GI NoV and GII NoV RNA. Prevalence in GI NoVs varied from 11.9 % for the salad vegetables samples to 15.5 % for the red soft fruits. Only 0.5 % of the salad and red soft fruits samples were positive for GII NoVs. These results highlight the high occurrence of human NoVs in foodstuffs that can be eaten raw or after a moderate technological processing or treatment. The determination of the risk of infection associated with an RT-qPCR positive sample remains an important challenge for the future.  相似文献   

14.
15.
16.
Although information is limited, it is evident that prolonged persistence of infectious Hepatitis A virus (HAV) is a factor in the transmission of the virus via fresh produce. Consequently, data on persistence of the virus on produce, and in environments relevant to production, such as soils, water and surfaces, are required to fully understand the dynamics of transmission of HAV via foods. Furthermore, information on effective disinfection procedures is necessary to implement effective post-harvest control measures. This review summarises current information on HAV persistence in fresh produce and on relevant disinfection procedures. On vegetables, HAV can remain infectious for several days; on frozen berries, it can persist for several months. HAV can remain infectious on surfaces for months, depending on temperature and relative humidity, and can survive desiccation. It can survive for several hours on hands. Washing hands can remove the virus, but further data are required on the appropriate procedure. Chlorination is effective in water, but not when HAV is associated with foodstuffs. Bleach and other sodium hypochlorite disinfectants at high concentrations can reduce HAV on surfaces, but are not suitable for use on fresh produce. There is only limited information on the effects of heating regimes used in the food industry on HAV. HAV is resistant to mild pasteurisation. Some food components, e.g. fats and sugars, can increase the virus’ resistance to higher temperatures. HAV is completely eliminated by boiling. Quantitative prevalence data are needed to allow the setting of appropriate disinfection log reduction targets for fresh produce.  相似文献   

17.
Human noroviruses and hepatitis A virus (HAV) are commonly associated with outbreaks occurring in restaurant establishments and catered events. Food handlers are major contributing factors to foodborne illnesses initiated in the kitchen setting. In this study, transfer of HAV and murine norovirus (MNV-1), a human norovirus surrogate, between produce (cucumbers, strawberries, tomatoes, cantaloupes, carrots, and honeydew melons) and common kitchen utensils (graters and knives) was investigated. The extent of virus transfer to produce during utensil application, in the presence and the absence of food residue, and the impact of knife surface properties (sharp, dull, serrated) was also investigated. Transfer of MNV-1 and HAV from produce items, initially contaminated with ~5.5 log PFU, to knives and graters during application ranged from 0.9 to 5.1 log PFU. MNV-1 transfer to knives was the greatest for cucumbers, strawberries, and tomatoes, and the least for honeydew melons, while transfer of HAV to knives was greater for tomatoes and honeydew melons than strawberries, cantaloupes, and cucumbers. After preparation of a contaminated produce item, knife cross-contamination easily occurred as viruses were detected on almost all of the seven produce items successively prepared. Produce residues on utensils often resulted in less virus transfer when compared to utensils without residue accumulation. Knife surface properties did not impact virus transfer. The ease of virus transfer between produce and utensils demonstrated by the current study highlights the importance of efforts aimed toward preventing cross-contamination in the kitchen environment.  相似文献   

18.
The discrimination of infectious and inactivated viruses remains a key obstacle when using quantitative RT-PCR (RT-qPCR) to quantify enteric viruses. In this study, propidium monoazide (PMA) and RNase pretreatments were evaluated for the detection and quantification of infectious hepatitis A virus (HAV). For thermally inactivated HAV, PMA treatment was more effective than RNase treatment for differentiating infectious and inactivated viruses, with HAV titers reduced by more than 2.4 log10 units. Results showed that combining 50 μM of PMA and RT-qPCR selectively quantify infectious HAV in media suspensions. Therefore, PMA treatment previous to RT-qPCR detection is a promising alternative to assess HAV infectivity.  相似文献   

19.
The formation of a dynamic membrane (DM) was investigated using polyethylene glycol (PEG) (molecular weight of 35000 g/mol, concentration of 1 g/L). Two natural organic matters (NOM), Dongbok Lake NOM (DLNOM) and Suwannee River NOM (SRNOM) were used in the ultrafiltration experiments along with PEG. To evaluate the effects of the DM with PEG on ultrafiltration, various transport experiments were conducted, and the analyses of the NOM in the membrane feed and permeate were performed using high performance size exclusion chromatography, and the effective pore size distribution (effective PSD) and effective molecular weight cut off (effective MWCO) were determined. The advantages of DM formed with PEG can be summarized as follows: (1) PEG interferes with NOM transmission through the ultrafiltration membrane pores by increasing the retention coefficient of NOM in UF membranes, and (2) low removal of NOM by the DM is affected by external factors, such as pressure increases during UF membrane filtration, which decreases the effective PSD and effective MWCO of UF membranes. However, a disadvantage of the DM with PEG was severe flux decline; thus, one must be mindful of both the positive and negative influences of the DM when optimizing the UF performance of the membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号