首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Land use change and other human disturbances have significant impacts on physicochemical and biological conditions of stream systems. Meanwhile, linking these disturbances with hydrology and water quality conditions is challenged due to the lack of high-resolution datasets and the selection of modeling techniques that can adequately deal with the complex and nonlinear relationships of natural systems. This study addresses the above concerns by employing a watershed model to obtain stream flow and water quality data and fill a critical gap in data collection. The data were then used to estimate fish index of biological integrity (IBI) within the Saginaw Bay basin in Michigan. Three methods were used in connecting hydrology and water quality variables to fish measures including stepwise linear regression, partial least squares regression, and fuzzy logic. The IBI predictive model developed using fuzzy logic showed the best performance with the R 2 = 0.48. The variables that identified as most correlated to IBI were average annual flow, average annual organic phosphorus, average seasonal nitrite, average seasonal nitrate, and stream gradient. Next, the predictions were extended to pre-settlement (mid-1800s) land use and climate conditions. Results showed overall significantly higher IBI scores under the pre-settlement land use scenario for the entire watershed. However, at the fish sampling locations, there was no significant difference in IBI. Results also showed that including historical climate data have strong influences on stream flow and water quality measures that interactively affect stream health; therefore, should be considered in developing baseline ecological conditions.  相似文献   

3.
ABSTRACT: Successful stream rehabilitation requires a shift from narrow analysis and management to integrated understanding of the links between human actions and changing river health. At study sites in the Puget Sound lowlands of western Washington State, landscape, hydrological, and biological conditions were evaluated for streams flowing through watersheds with varying levels of urban development. At all spatial scales, stream biological condition measured by the benthic index of biological integrity (B‐IBI) declined as impervious area increased. Impervious area alone, however, is a flawed surrogate of river health. Hydrologic metrics that reflect chronic altered streamflows, for example, provide a direct mechanistic link between the changes associated with urban development and declines in stream biological condition. These measures provide a more sensitive understanding of stream basin response to urban development than do treatment of each increment of impervious area equally. Land use in residential backyards adjacent to streams also heavily influences stream condition. Successful stream rehabilitation thus requires coordinated diagnosis of the causes of degradation and integrative management to treat the range of ecological stressors within each urban area, and it depends on remedies appropriate at scales from backyards to regional storm water systems.  相似文献   

4.
Sustainable environmental planning and management require effective integration of ecological, socioeconomic, and institutional elements. This paper presents an integrative methodological framework for sustainable environmental planning and management. The development of this integrative framework is accomplished by combining two complementary analytical approaches—Hufschmidt's conceptual framework for watershed planning and management and the ABC resource survey method. The combined methodological framework seeks to delineate and synthesize essential ecological information utilizing an integrative resource survey method. This method generates classifications of environmental significance and constraint. Areas of environmental significance and constraint are then linked to appropriate and acceptable resource management actions, implementation tools (e.g., education, technical assistance), and institutional and organizational arrangements. The integrative methodological framework was developed for application in the Rio Fortuna watershed in Costa Rica's Arenal Conservation Area. The watershed is characterized by a variety of land and resource uses, including biologically diverse and ecologically fragile protected areas, small-parcel agriculture, cattle ranching, and tourism.  相似文献   

5.
ABSTRACT: This paper compares approaches to quantifying land cover/land use (LCLU) in riparian corridors of 23 watersheds in Oregon's Willamette Valley using color infrared aerial photography (AP) and Thematic Mapper (TM) imagery. For each imagery source, LCLU adjacent to stream networks were quantified across a range of lateral and longitudinal scales. Single‐date AP data had higher LCLU class accuracies than the multi‐date TM data, except for row crops. Correlations among LCLU classes for the two imagery sources increased with increased spatial extent. In general, LCLU proportions for AP and TM differed, but lateral/longitudinal patterns were similar. An aggregated vegetation class comprised of forest, shrub/scrub, and grass/forb was strongly associated with a fish index of biotic integrity (IBI) for both AP and TM data, although AP correlations were higher. Highest fish IBI correlations for both data sources were with the aggregated vegetation class close to the stream and for the longest longitudinal scales. The row crop class was strongly associated with stream nitrate for both data sources, although correlations for the TM data were higher. Stream nitrate correlations were strongest for the widest lateral and longest longitudinal scales. Overall, both single‐date AP and multi‐date TM imagery appear to have potential for use in estimating indicators of stream ecological condition.  相似文献   

6.
ABSTRACT: This paper presents the results of cost effectiveness (CE) analysis of vegetative filter strips (VFS) and instream half‐logs as tools for recovering scores on a fish Index of Biotic Integrity (IBI) in the upper Wabash River watershed (UW) in Indiana. Three assumptions were made about recovery time for IBI scores (5,15, and 30 years) and social discount rates (1, 3, and 5 percent), which were tested for sensitivity of the estimated CE ratios. Effectiveness of VFS was estimated using fish IBIs and riparian forest cover from 49 first‐order to fifth‐order stream reaches. Half‐log structures had been installed for approximately two years in the UW prior to the study and provided a basis for estimates of cost and maintenance. Cost effectiveness ratios for VFS decreased from $387 to $277 per 100 m for a 1 percent increase in IBI scores from first‐to fifth‐order streams with 3 percent discount and 30‐year recovery. This cost weighted by proportion of stream orders was $360. The ratio decreased with decreasing time of recovery and discount rate. Based on installation costs and an assumption of equal recovery rates, half‐logs were two‐thirds to one‐half as cost‐effective as VFS. Half‐logs would be a cost‐effective supplement to VFS in low order streams if they can be proven to recover IBI scores faster than VFS do. This study provides baseline data and a framework for planning and determining the cost of stream restoration.  相似文献   

7.
The regional-scale importance of an aquatic stressor depends both on its regional extent (i.e., how widespread it is) and on the severity of its effects in ecosystems where it is found. Sample surveys, such as those developed by the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP), are designed to estimate and compare the extents, throughout a large region, of elevated conditions for various aquatic stressors. In this article, we propose relative risk as a complementary measure of the severity of each stressor’s effect on a response variable that characterizes aquatic ecological condition. Specifically, relative risk measures the strength of association between stressor and response variables that can be classified as either “good” (i.e., reference) or “poor” (i.e., different from reference). We present formulae for estimating relative risk and its confidence interval, adapted for the unequal sample inclusion probabilities employed in EMAP surveys. For a recent EMAP survey of streams in five Mid-Atlantic states, we estimated the relative extents of eight stressors as well as their relative risks to aquatic macroinvertebrate assemblages, with assemblage condition measured by an index of biotic integrity (IBI). For example, a measure of excess sedimentation had a relative risk of 1.60 for macroinvertebrate IBI, with the meaning that poor IBI conditions were 1.6 times more likely to be found in streams having poor conditions of sedimentation than in streams having good sedimentation conditions. We show how stressor extent and relative risk estimates, viewed together, offer a compact and comprehensive assessment of the relative importances of multiple stressors.  相似文献   

8.
ABSTRACT

Regions of high biodiversity often coincide with regions of poverty and conservation can imply economic and social costs for poor resident populations. Environmental compensation is considered a tool to reduce socio-environmental conflict, improve the equity of conservation and promote sustainable development. The intricacies of specific socio-ecological systems may determine how compensation payments are interpreted locally to produce outcomes. This research examines the social perceptions of an ecological fiscal transfer which intends to compensate the local public administration for the substantial costs of conservation in a hotspot of biological and social diversity in the Brazilian Atlantic forest. In this context we explore whether financial compensation (1) influences local perceptions of the conservation regime, (2) contributes towards the reconciliation of human-conservation conflicts and (3) triggers any meaningful socio-economic improvement that would counter the local costs of conservation. Results show that environmental compensation is not widely recognised as effectively benefiting the community. Local authorities consider compensation insufficient to enact a sustainable development agenda. Environmental compensation could play an important role in a policy mix for socially equitable conservation by being explicitly linked to community benefits, especially to fostering local livelihoods. The collaboration of actors operating across multiple governance levels may improve the institutional capacity of local actors to produce effective outcomes.  相似文献   

9.
The biodiversity of many Brazilian rivers is seriously threatened by industrial and municipal pollution, and Rio Paraiba do Sul, located between two major industrial centers is one example of this situation. A survey of the fish assemblage was conducted from October 1998 to September 1999 and the data were used to develop an index of biotic integrity (IBI). We sampled three zones in bracketing a large urban–industrial complex to evaluate water quality changes and the usefulness of the IBI as a monitoring tool. Water quality was classified as poor upstream of the effluent discharges, very poor near the discharges, and poor–fair downstream of the discharges, with this latter situation revealing the current biological capacity of the river. Physical and chemical habitat characteristics were also measured at each site to construct an independent environmental index to validate the IBI. The habitat and IBI indices were highly correlated, suggesting this IBI would be applicable to other large rivers in southeast Brazil.  相似文献   

10.
Abstract: We used a retrospective approach to identify hydrologic metrics with the greatest potential for ecological relevance for use as resource management tools (i.e., hydrologic indicators) in rapidly urbanizing basins of the Puget Lowland. We proposed four criteria for identifying useful hydrologic indicators: (1) sensitive to urbanization consistent with expected hydrologic response, (2) demonstrate statistically significant trends in urbanizing basins (and not in undeveloped basins), (3) be correlated with measures of biological response to urbanization, and (4) be relatively insensitive to potentially confounding variables like basin area. Data utilized in the analysis included gauged flow and benthic macroinvertebrate data collected at 16 locations in 11 King County stream basins. Fifteen hydrologic metrics were calculated from daily average flow data and the Pacific Northwest Benthic Index of Biological Integrity (B‐IBI) was used to represent the gradient of response of stream macroinvertebrates to urbanization. Urbanization was represented by percent Total Impervious Area (%TIA) and percent urban land cover (%Urban). We found eight hydrologic metrics that were significantly correlated with B‐IBI scores (Low Pulse Count and Duration; High Pulse Count, Duration, and Range; Flow Reversals, TQmean, and R‐B Index). Although there appeared to be a great deal of redundancy among these metrics with respect to their response to urbanization, only two of the metrics tested – High Pulse Count and High Pulse Range – best met all four criteria we established for selecting hydrologic indicators. The increase in these high pulse metrics with respect to urbanization is the result of an increase in winter high pulses and the occurrence of high pulse events during summer (increasing the frequency and range of high pulses), when practically none would have occurred prior to development. We performed an initial evaluation of the usefulness of our hydrologic indicators by calculating and comparing hydrologic metrics derived from continuous hydrologic simulations of selected basin management alternatives for Miller Creek, one of the most highly urbanized basins used in our study. We found that the preferred basin management alternative appeared to be effective in restoring some flow metrics close to simulated fully forested conditions (e.g., TQmean), but less effective in restoring other metrics such as High Pulse Count and Range. If future research continues to support our hypothesis that the flow regime, particularly High Pulse Count and Range, is an important control of biotic integrity in Puget Lowland streams, it would have significant implications for stormwater management.  相似文献   

11.
Best management practices (BMPs) have been developed to address soil loss and the resulting sedimentation of streams, but information is lacking regarding their benefits to stream biota. We compared instream physical habitat and invertebrate and fish assemblages from farms with BMP to those from farms with conventional agricultural practices within the Whitewater River watershed of southeastern Minnesota, USA, in 1996 and 1997. Invertebrate assemblages were assessed using the US EPA's rapid bioassessment protocol (RBP), and fish assemblages were assessed with two indices of biotic integrity (IBIs). Sites were classified by upland land use (BMP or conventional practices) and riparian management (grass, grazed, or wooded buffer). Physical habitat characteristics differed across buffer types, but not upland land use, using an analysis of covariance, with buffer width and stream as covariates. Percent fines and embeddedness were negatively correlated with buffer width. Stream sites along grass buffers generally had significantly lower percent fines, embeddedness, and exposed streambank soil, but higher percent cover and overhanging vegetation when compared with sites that had grazed or wooded buffers. RBP and IBI scores were not significantly different across upland land use or riparian buffer type but did show several correlations with instream physical habitat variables. RBP and IBI scores were both negatively correlated with percent fines and embeddedness and positively correlated with width-to-depth ratio. The lack of difference in RBP or IBI scores across buffer types suggests that biotic indicators may not respond to local changes, that other factors not measured may be important, or that greater improvements in watershed condition are necessary for changes in biota to be apparent. Grass buffers may be a viable alternative for riparian management, especially if sedimentation and streambank stability are primary concerns.  相似文献   

12.
ABSTRACT: We compared watershed land‐use and fish community data between the 1970s and 1990s in 47 small streams in southeastern Wisconsin. Our goal was to quantify effects of increasing urbanization on stream fishes in what had been a predominantly agricultural region. In the 43 test watersheds, mean surface coverage by agricultural lands decreased from 54 percent to 43 percent and urban lands increased from 24 percent to 31 percent between 1970 and 1990. Agriculture dominated the four reference watersheds, but neither agriculture (65–59 percent) nor urban (4.4–4.8 percent) land‐uses changed significantly in those watersheds during the study period. From the 1970s to the 1990s the mean number of fish species for the test stream sites decreased 15 percent, fish density decreased 41 percent, and the index of biotic integrity (IBI) score dropped 32 percent. Fish community attributes at the four reference sites did not change significantly during the same period, although density was substantially lower in the 1990s. For both the 1970s and 1990s test sites, numbers of fish species and IBI scores were positively correlated with watershed percent agricultural land coverage and negatively correlated with watershed urban land uses, as indexed by percent effective connected imperviousness. Numbers of fish species per site and IBI scores were highly variable below 10 percent imperviousness, but consistently low above 10 percent. Sites that had less than 10 percent imperviousness and fewer than 10 fish species in the 1970s suffered the greatest relative increase in imperviousness and decline in species number over the study period. Our findings are consistent with previous studies that have found strong negative effects of urban land uses on stream ecosystems and a threshold of environmental damage at about 10 percent imperviousness. We conclude that although agricultural land uses often degrade stream fish communities, agricultural land impacts are generally less severe than those from urbanization on a per‐unit‐area basis.  相似文献   

13.
Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base‐flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite‐nitrate (NO2‐NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2‐NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed‐use and heavily impacted watersheds.  相似文献   

14.
ABSTRACT: The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin the determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed‐scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach‐scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.  相似文献   

15.
We analyzed the relation of the amount and spatial pattern of land cover with stream fish communities, in-stream habitat, and baseflow in 47 small southeastern Wisconsin, USA, watersheds encompassing a gradient of predominantly agricultural to predominantly urban land uses. The amount of connected impervious surface in the watershed was the best measure of urbanization for predicting fish density, species richness, diversity, and index of biotic integrity (IBI) score; bank erosion; and base flow. However, connected imperviousness was not significantly correlated with overall habitat quality for fish. Nonlinear models were developed using quantile regression to predict the maximum possible number of fish species, IBI score, and base flow for a given level of imperviousness. At watershed connected imperviousness levels less than about 8%, all three variables could have high values, whereas at connected imperviousness levels greater than 12% their values were inevitably low. Connected imperviousness levels between 8 and 12% represented a threshold region where minor changes in urbanization could result in major changes in stream condition. In a spatial analysis, connected imperviousness within a 50-m buffer along the stream or within a 1.6-km radius upstream of the sampling site had more influence on stream fish and base flow than did comparable amounts of imperviousness further away. Our results suggest that urban development that minimizes amount of connected impervious surface and establishes undeveloped buffer areas along streams should have less impact than conventional types of development.  相似文献   

16.
Why, despite a recent surge in the UK in “sustainable communities” policy discourse, do so many community-led sustainability initiatives remain fragmented, marginal and disconnected from local government strategies? How can community- and government-led sustainability initiatives be better integrated such that they add significantly to a denser matrix and cluster of sustainable places? These questions, we argue, lie at the heart of current sustainable place-making debates. With particular reference to two spatial scales of analysis and action, the small town of Stroud, England and the city of Cardiff, Wales, we explore the twin processes of disconnection and connection between community sustainability activists and local state actors. We conclude that whilst there will always remain a need for community groups to protect the freedom which comes from acting independently, for community activists and policy-makers alike, there are nevertheless a series of mutual benefits to be had from co-production. However, in setting out these benefits we also emphasise the dual need for local government to play a much more nuanced, integrative and facilitatory role, in addition to, but separate from, its more traditional regulatory role.  相似文献   

17.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

18.
Ecology and culture comprise interacting components of landscapes. Understanding the integrative nature of the landscape is essential to establish methods for sustainable management. This research takes as a unifying theme the idea that ecological and cultural issues can be incorporated through management. As a first step in developing integrative management strategies, information must be collected that compares and contrasts ecological and cultural issues to identify their areas of intersection. Specifically how can local cultural knowledge enable water resource management that reflects cultural and ecological values? This research examines Native American cultural knowledge for setting water resource management priorities in the Wind River Indian Reservation in central Wyoming. A cross-cultural approach is adopted to assess the relationship between indigenous cultural knowledge and Euro-American perspectives through a comparative examination of the Wind River Water Code and Wyoming Water Law. This research indicates that cultural perspectives provide a rich arena in which to examine management issues. Understanding and identifying cultural practices may be an important first step in collaborative resource management between different cultural groups to prevent conflict and lengthy resolution in court.  相似文献   

19.
Abstract: This study evaluated biological integrity expectations of fish assemblages in wadeable streams for the Alabama portion of the Choctawhatchee River watershed using a multimetric approach. Thirty‐four randomly selected stream sites were sampled in late spring 2001 to calibrate an index of biotic integrity (IBI). Validation data were collected during the spring 2001, and summer and fall of 2003 from disturbed and least‐impacted targeted sites (n = 20). Thirty‐five candidate metrics were evaluated for their responsiveness to environmental degradation. Twelve metrics were selected to evaluate wadeable streams and four replacement metrics were selected for headwater streams. Scores that ranged from 58 to 60 were considered to be representative of excellent biotic integrity (none found in this study), scores of 48‐52 as good integrity (31% of the sites in this study), 40‐44 as fair (43%), 28‐34 as poor (21%), and 12‐22 as very poor (5%). Of the four stream condition categories (urban, cattle, row crop, and least impacted), the IBI scores for urban and cattle sites differed significantly from least‐impacted sites. Row crop sites, although not significantly different from least‐impacted, tended to have greater variability than the other categories. Lower IBI scores at both urban and cattle sites suggest that the IBI accurately reflects stream impairment in the Choctawhatchee River drainage.  相似文献   

20.
ABSTRACT: Dam removal has been proposed as an effective method of river restoration, but few integrative studies have examined ecological responses to the removal of dams. In 1999, we initiated an interdisciplinary study to determine ecological responses to the removal of a 2 m high dam on lower Manatawny Creek in southeastern Pennsylvania. We used an integrative monitoring program to assess the physical, chemical, and biological responses to dam removal. Following removal in 2000, increased sediment transport has led to major changes in channel form in the former impoundment and downstream reaches. Water quality did not change markedly following removal, probably because of the impoundment's short hydraulic residence time (less than two hours at base flow) and infrequent temperature stratification. When the impoundment was converted to a free flowing reach, the composition of the benthic macroinvertebrate and fish assemblages in this portion of Manatawny Creek shifted dramatically from lentic to lotic taxa. Some fish species inhabiting the free flowing reach downstream from the dam were negatively affected by large scale sediment transport and habitat alteration following dam removal, but this appears to be a short term response. Based on our observations and experiences in this study, we provide a list of issues to evaluate when considering future dam removals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号