首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this research was to establish a correlation between inactivation of fecal coliforms caused by organic acids in their unionized form in batch acid digesters and semicontinuously fed acid digesters at both mesophilic (38 degrees C) and low-mesophilic (24 degrees C) temperatures. Batch acid digesters achieved a U.S. Environmental Protection Agency Class A level of fecal coliforms within 6 to 7 days of digestion at both temperatures. Semicontinuously fed, staged, acid-digestion systems achieved Class A standards on average only at mesophilic temperature at a solids retention time of 11 days. Systems operated at low-mesophilic temperatures did not achieve Class A standards.  相似文献   

2.
Thermophilic-anaerobic digestion in a single-stage, mixed, continuous-flow reactor is not approved in the United States as a process capable of producing Class A biosolids for land application. This study was designed to evaluate the inactivation of pathogens and indicator organisms in such a reactor followed by batch treatment in a smaller reactor. The combined process was evaluated at 53 degrees C with sludges from three different sources and at 51 and 55 degrees C with sludge from one of the sources. Feed sludge to the continuous-flow reactor was spiked with the pathogen surrogates Ascaris suum and vaccine-strain poliovirus. Feed and effluent were analyzed for these organisms and for indigenous Salmonella spp., fecal coliforms, Clostridium perfringens spores, and somatic and male-specific coliphages. No viable Ascaris eggs were observed in the effluent from the continuous reactor at 53 or 55 degrees C, with greater than 2-log removals across the digester in all cases. Approximately 2-log removal was observed at 51 degrees C, but all samples of effluent biosolids contained at least one viable Ascaris egg at 51 degrees C. No viable poliovirus was found in the digester effluent at any of the operating conditions, and viable Salmonella spp. were measured in the digester effluent in only one sample throughout the study. The ability of the continuous reactor to remove fecal coliforms to below the Class A monitoring limit depended on the concentration in the feed sludge. There was no significant removal of Clostridium perfringens across the continuous reactor under any condition, and there also was limited removal of somatic coliphages. The removal of male-specific coliphages across the continuous reactor appeared to be related to temperature. Overall, at least one of the Class A pathogen criteria or the fecal coliform limit was exceeded in at least one sample in the continuous-reactor effluent at each temperature. Over the range of temperatures evaluated, the maximum time required to meet the Class A criteria by batch treatment of the continuous-reactor effluent was 1 hour for Ascaris suum and Salmonella spp. and 2 hours for fecal coliforms.  相似文献   

3.
Performance and stability of two-stage anaerobic digestion.   总被引:1,自引:0,他引:1  
The stability, capacity, and solids destruction efficiency of single versus two-stage anaerobic digestion was studied in bench-scale reactors using combined waste activated and primary sludge. Laboratory staged mesophilic digesters showed an improved volatile solids and volatile suspended solids destruction efficiency over a single-stage system (at the same total solids retention time [SRT]) of approximately 3.2 and 5.8 percentage points, respectively. To quantify stability and capacity, a new digester monitoring method was introduced that measured the digester maximum acetate utilization capacity, V(max,ac), and was used to investigate the potential for digester instability at different transient loadings. The ratio of the V(max,ac) value to the estimated acetate production rate for a given digester loading was termed the acetate capacity number (ACN). Values greater than 1.0 indicate excess acetate utilization capacity. The first stage of the laboratory two-stage mesophilic system (10-day SRT for each stage) had an ACN number of 1.3 compared with a value of 1.8 for the single-stage 20-day SRT digester. Thus, while a staged mesophilic system can improve solids destruction efficiency, it demonstrates a lower capacity for metabolizing highly variable loads.  相似文献   

4.
During continuous operation of three mesophilic-anaerobic digesters, the effect of microwave irradiation, as sludge thermal pretreatment (60 to 65 degrees C), was studied. The fecal coliforms log inactivation for microwaved/digested sludge was 4.2 +/- 0.4, whereas for conventionally heated/digested sludge and control were 2.9 +/- 0.5 and 1.5 +/- 0.5, respectively. In the case of Salmonella spp., no colonies were detected in 85% of the microwaved/digested samples. Considering the detection limit, the log inactivation of these samples was greater than 2.0 +/- 0.3. The conventionally heated/digested sludge and control showed log inactivations of 1.9 +/- 0.2 and 1.1 +/- 0.3, respectively. At the 95% confidence level, microwaved/digested sludge increased the biogas production by 16.4 +/- 5.6% and 6.3 +/- 2.4%, as compared to control and conventionally heated/digested sludge, respectively. When thermally treated sludge was analyzed for soluble chemical oxygen demand, microwaved waste-activated sludge showed considerable solubilization between 37 and 60 degrees C. Microwaved/digested sludge showed a reduction of capillary suction times by 11.1 +/- 5.9% and 10.7 +/- 5.6%, as compared to control and conventionally heated/digested sludge, respectively.  相似文献   

5.
污泥与高浓度有机废物厌氧消化反应中的产气量   总被引:3,自引:0,他引:3  
研究了高温/中温两相厌氧消化反应器系用以同时处理污泥与不同高浓度有机废物时产气及产甲烷的变化特性。结果表明,气体及甲烷主要是在第二段的中温消化反应器内产生。当中温消化反应器的有机负荷VS为1.65 ̄3.10kg/m^3d时,稳态条件下的平均产气量为1.958 ̄4.020m^3/d,气体中甲烷的平均组成为65% ̄73%,甲烷的比产率为0.397 ̄0.511m^3/kgVS。  相似文献   

6.
The U.S. Environmental Protection Agency (U.S. EPA) Part 503 Biosolids Rule requires the fecal coliform (indicator) or Salmonella species (pathogen) density requirements for Class A biosolids to be met at the last point of plant control (truck-loading facility and/or farm for land application). The three Southern Californian wastewater treatment plants in this study produced biosolids by thermophilic anaerobic digestion and all met the Class A limits for both fecal coliforms and Salmonella sp. in the digester outflow biosolids. At two plants, however, a recurrence of fecal coliforms was observed in postdigestion biosolids, which caused exceedance of the Class A limit for fecal coliforms at the truck-loading facility and farm for land application. Comparison of observations at the three plants and further laboratory tests indicated that the recurrence of fecal coliforms can possibly be related to the following combination of factors: (1) incomplete destruction of fecal coliforms during thermophilic anaerobic digestion, (2) contamination of Class A biosolids with fecal coliforms from external sources during postdigestion, (3) a large drop of the postdigestion biosolids temperature to below the maximum for fecal coliform growth, (4) an unknown effect of biosolids dewatering in centrifuges. At Hyperion Treatment Plant (City of Los Angeles, California), fecal coliform recurrence could be prevented by the following: (1) complete conversion to thermophilic operation to exclude contamination by mesophilically digested biosolids and (2) insulation and electrical heat-tracing of postdigestion train for maintaining a high biosolids temperature in postdigestion.  相似文献   

7.
Recuperative thickening of anaerobic digester sludge (thickening with solids return) yields increased digester capacity. Common thickening methods cause oxygen exposure to the digester sludge. This study evaluated the effects of various levels of oxygen exposure on the acetoclastic methanogens. Gravity belt thickening had no detrimental effect on the acetoclastic activity. From a 7-day batch test with continuous oxygen exposure of digester sludge, a 12% loss in acetoclastic activity was predicted for a digester with a 20-day solids retention time (SRT) and 100% recycle with recuperative thickening via dissolved air flotation thickening. However, a greater loss (27%) was found from a long-term, bench-scale digester operated under similar conditions. This loss did not affect the digester performance, as measured by volatile solids destruction. This research suggests that recuperative thickening may not affect digester performance at a long SRT with constant operation, but may change the reserve capacity of the anaerobic community.  相似文献   

8.
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.  相似文献   

9.
Phthalic acid esters (PAE) are commonly found in the sludge generated in the wastewater treatment plants. Anaerobic digestion followed by land application is a common treatment and disposal practice of sludge. To date, many studies exist on the anaerobic biodegradation rates of PAE, especially of the easily biodegradable ones, whereas the higher molecular weight PAE have reported to be non-biodegradable under methanogenic conditions. Furthermore, there is no information on the effect of the PAE on the performance of the anaerobic digesters treating sludge. In this study, the anaerobic biodegradation of di-n-butyl phthalate (DBP), di-ethyl phthalate (DEP) and di-ethylhexyl phthalate (DEHP) was investigated and their relative rates of anaerobic degradation were calculated. Also, the biological removal of PAE during the anaerobic digestion of sludge in bench-scale digesters was investigated using DBP and DEHP as model compounds of one biodegradable and one recalcitrant PAE respectively. The degradation of all the PAE tested in this study (DEP, DBP and DEHP) is adequately described by first-order kinetics. Batch and continuous experiments showed that DEP and DBP present in sludge are rapidly degraded under mesophilic anaerobic conditions (a first-order kinetic constant of 8.04 x 10(-2) and 13.69 x 10(-2)-4.35 day(-1) respectively) while DEHP is degraded at a rate between one to two orders of magnitude lower (0.35 x 10(-2)-3.59 x 10(-2) day(-1)). It is of high significance that experiments with anaerobic sludge of different origin (US and Europe) showed that degradation of DEHP occurs under methanogenic conditions. Accumulation of high levels of DEHP (more than 60 mg/l) in the anaerobic digester has a negative effect on DBP and DEHP removal rates as well as on the biogas production.  相似文献   

10.
Influence of ultrasonication on anaerobic bioconversion of sludge.   总被引:1,自引:0,他引:1  
The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.0384 day(-1) in the control digester to 0.0672 day(-1) in the digester fed, with sludge sonicated at 0.52 W/mL. The sonication appeared to be ineffective in relation to acidogenesis reaction rates, but it provided a better buffering capacity to diminish the adverse effect of acidification. Digesters fed with sonicated sludge demonstrated enhanced methanogenesis over the control unit. Determination by coenzyme F420 verified that sonication is able to promote the growth of methanogenic biomass and facilitate a positive methanogenic microbial development in suppressing the initial methanogenesis limitation. The results suggest that ultrasonication could enhance anaerobic decomposition of sludge, resulting in an accelerated bioconversion, improved organics degradation, improved biogas production, and increased methane content.  相似文献   

11.
The goal of this research was to demonstrate the ability to achieve Class A pathogen standards in nonthermophilic acid digesters. It was proposed that the key mechanism responsible for fecal coliform inactivation was the presence of un-ionized volatile fatty acids. Lab-scale acid digesters were assembled and operated in a batch mode for 5 days at mesophilic (38 degrees C) and low-mesophilic (21 degrees C) temperatures and at different solids concentrations. The key factor recognized for successful pathogen inactivation was pH, which is also the main factor driving the shift in organic acids toward the un-ionized form. Compared to conventional mesophilic acid digestion, low-mesophilic acid digestion was effective in fecal coliform inactivation because the process maintained lower pH throughout the duration of the experiment, offered continuous release of organic acids, and showed higher concentrations of organic acids in un-ionized form, including acetate, propionate, butyrate, and valerate.  相似文献   

12.
There is increasing interest in the United States in producing biosolids from municipal wastewater treatment that meet the criteria for Class A designation established by the U.S. Environmental Protection Agency. Class A biosolids are intended to be free of pathogens and also must meet requirements for reduction of the vector-attraction potential associated with untreated sludge. High-temperature processes are considered to produce Class A biosolids if the combination of operating temperature and treatment time exceeds minimum criteria, but this option is not applicable to mixed, continuous-flow reactors. Such reactors, or any combination of reactors that does not meet the holding time requirement at a specific temperature, must be demonstrated to inactivate pathogens to levels consistent with the Class A criteria. This study was designed to evaluate pathogen inactivation by thermophilic anaerobic digestion in a mixed, continuous-flow reactor followed by batch or plug-flow treatment. In this first of a two-part series, we describe the performance of a continuous-flow laboratory reactor with respect to physical and chemical operating parameters; microbial inactivation in the combined continuous-flow and batch treatment system is described in the second part. Sludges from three different sources were treated at 53 degrees C, while sludge from one of the sources was also treated at 55 and 51 degrees C. Relatively short hydraulic retention times (four to six days) were used to represent a conservative operating condition with respect to pathogen inactivation. Treatment of a fermented primary sludge led to an average volatile-solids (VS) destruction efficiency of 45%, while VS destruction for the other two sources was near or below 38%, the Class A criterion for vector attraction reduction. Consistent with other studies on thermophilic anaerobic digestion of sludges at short residence times, effluent concentrations of volatile fatty acids (VFAs) were relatively high. Also consistent with other studies, the most abundant VFA in the effluent was propionate. Gas production ranged from 0.3 to 0.5 m3/kg VS fed and from 0.8 to 1.3 m3/kg VS destroyed.  相似文献   

13.
The objectives of this research were to evaluate the potential for sudden increase and/or regrowth of alternative bacteria as either indicators or pathogens after dewatering of thermophilic and mesophilically digested biosolids. The results showed that, in general, for thermophilic processes, even when a statistically significant (p < 0.05) sudden increase and regrowth occurred for fecal coliforms, Escherichia coli, and Enterococci, it did not occur for Salmonella or Aeromonas. For the mesophilic process evaluated, sudden increase did not occur, but regrowth occurred for fecal coliforms, E. coli, Enterococci, and Salmonella. The results have implications for Class A and B biosolids regulations, as both fecal coliform and Salmonella are part of the regulatory limits. The results also suggest that the public health risks are minimal, as a result of the potential sudden increase and regrowth that may occur.  相似文献   

14.
The effect of an oxidative co-treatment on anaerobic digestion of a mixture of primary and waste activated sludge was investigated. The oxidant used in this study was hydrogen peroxide (H2O2). A maximum improvement in solid destruction of 15.2% was achieved in the overall process, with a dosage of 2.0 g H2O2/g influent volatile suspended solids (VSS(influent)). All configurations operated at this dosage also showed statistically significant increases in solids removal. A statistically significant enhancement in overall solids destruction was observed for the lower oxidant dosage (0.5 H2O2/g VSS(influent)). Surprisingly, for 1.0 g H2O2/g VSS(influent), only one of the three configurations involving oxidative co-treatment showed significant increases in solids destruction. Special attention was paid to the performance of this process relative to fecal coliforms destruction. Class A biosolids were obtained for all the different hydrogen peroxide dosages used when oxidative co-treatment is combined with a two-stage anaerobic digestion process.  相似文献   

15.
The conventional anaerobic digestion process, requiring long solids retention times (SRTs) to digest solids, is currently viewed as impractical for the pulp and paper industry because of high capital costs associated with the construction of new digesters. Recent developments in sludge solubilization technology could be promising in reducing digester size, which also allows for the potential use of decommissioned tanks, both of which can reduce the capital cost. Three pretreatment technologies for use with anaerobic digestion were tested on laboratory-scale to investigate their feasibility. The SRTs in all three digesters systematically decreased from 20 to 3 days. The reference digester was fed waste activated sludge (WAS) to serve as the control at the same SRTs. The other digesters were fed WAS that had been preconditioned using mechanical shearing, sonication, or high-pressure homogenization technology. Anaerobic digestion with high-pressure homogenization produced as much methane at 3-day mean SRT as that from the reference digester operated at 20-day SRT. Therefore, a new digester can theoretically be 85% smaller than a conventional digester. An added benefit of WAS to methane conversion is the recovery of nutrients nitrogen and phosphorus.  相似文献   

16.
Batch anaerobic digesters were used to stabilize microwave (MW)-irradiated waste activated sludge (WAS). A low temperature range (50-96 degrees C) MW irradiation was applied. Effects of pretreatment temperature (T) and intensity (I), concentration (C) and percentage of sludge pretreated (PT) were investigated in a multilevel factorial statistical design containing 54 mesophilic batch reactors by monitoring cumulative biogas production (CBP). Variance analysis (ANOVA) determined that the most important factors affecting WAS solubilization were temperature, intensity, and sludge concentration. Improvements in CBP from WAS were significantly affected by sludge percentage pretreated, temperature, and concentration. Pretreatment resulted in 3.6 +/- 0.6 and 3.2 +/- 0.1 fold increases in soluble to total chemical oxygen demand (SCOD/TCOD) at high and low sludge concentrations, respectively. WAS, microwaved to 96 degrees C, produced the greatest improvement in CBP with 15 +/- 0.5 and 20 +/- 0.3% increases over controls after 19 d of digestion at low and high WAS concentrations. Dewaterability of microwaved sludge was enhanced after anaerobic digestion.  相似文献   

17.
The effects of organic loading rate and operating temperature on the microbial diversity and performances of upflow anaerobic sludge blanket (UASB) reactors treating palm oil mill effluent (POME) were investigated. The following two UASB reactors were run in parallel for comparison: (1) under a mesophilic condition (37 degrees C) and (2) under a mesophilic condition in transition to a thermophilic condition (57 degrees C). A polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) analysis showed that the microbial population profiles significantly changed with the organic loading rate (OLR) and the temperature transition from the mesophilic to the thermophilic condition. Significant biomass washout was observed for the mesophilic UASB when operating at a high organic loading rate (OLR) of 9.5 g chemical oxygen demand (COD)/L.d. In contrast, the thermophilic UASB can be operated at this OLR and at a temperature of 57 degrees C with satisfactory COD removal and biogas production. The PCR-based DGGE analysis suggested that the thermophilic temperature of 57 degrees C was suitable for a number of hydrolytic, acidogenic, and acetogenic bacteria.  相似文献   

18.
Eleven dewatered sludge cakes collected from anaerobic digesters at different treatment plants were evaluated for the amount, type, and pattern of odorous gas production. All but one of the sludge cakes were from mesophilic anaerobic digesters. One was from a thermophilic digester. The pattern and quantities of sulfur gases were found to be unique for each of the samples with regard to the products produced, magnitude, and subsequent decline. The main odor-causing chemicals were volatile sulfur compounds, which included hydrogen sulfide, methanethiol, and dimethyl sulfide. Volatile sulfur compound production peaked in 3 to 8 days and then declined. The decline was a result of conversion of organic sulfur compounds to sulfide. In one side-by-side test, a high-solids centrifuge cake generated more odorous compounds than the low-solids centrifuge cake. The data show that anaerobic digestion does not eliminate the odor potential of anaerobically digested dewatered cakes.  相似文献   

19.
Methanosarcina species with a high maximum specific growth rate (mumax) and high half-saturation coefficient (KS) and Methanosaeta species with a low mumax and low KS are the only known aceticlastic methanogens. Because of Methanosaeta's low KS, the low acetate concentrations in conventional, mesophilic anaerobic digestion yield Methanosaeta dominance. However, Methanosarcina absorbs increases in acetate more efficiently and thus promotes more stable digestion. This paper tests the hypothesis that decreasing digester feeding frequencies can increase Methanosarcina predominance. Two acetate-fed reactors were established at a 17-day solids retention time. One reactor was fed hourly, and one was fed once daily. Microscopic and molecular methods were used to verify that the hourly fed reactor enriched for Methanosaeta, while the daily fed reactor enriched for Methanosarcina. Growth and substrate-use kinetics were measured for each reactor. A digester overload condition was simulated, and the Methanosarcina-enriched reactor was found to perform better than the Methanosaeta-enriched reactor. These findings indicate that Methanosarcina dominance can be achieved with infrequent feedings, leading to more stable digestion.  相似文献   

20.
The highest quality of biosolids is called exceptional quality. To qualify for this classification, biosolids must comply with three criteria: (1) metal concentrations, (2) vector-attraction reduction, and (3) the Class A pathogen-density requirements. The City of Los Angeles Bureau of Sanitation Hyperion Treatment Plant (HTP) (Playa del Rey, California) meets the first two requirements. Thus, the objective of this study was to ensure that HTP's biosolids production would meet the Class A pathogen-reduction requirements following the time-temperature regimen for batch processing (U.S. EPA, 1993; Subsection 32, Alternative 1). Because regulations require the pathogen limits to be met at the last point of plant control, biosolids sampling was not limited to immediately after the digesters, i.e., the digester outflows. The sampling extended to several locations in HTP's postdigestion train, in particular, the last points of plant control, i.e., the truck loading facility and the farm for land application. A two-stage, thermophilic-continuous-batch process, consisting of a battery of six egg-shaped digesters, was established in late 2001 for phase I of this study and modified in early 2002 for phase II. As the biosolids were discharged from the second-stage digesters, the Salmonella sp. (pathogen) and fecal-coliform (indicator) densities were well below the limits for Class A biosolids, even though the second-stage-digester temperatures were a few degrees below the temperature required by Alternative 1. Salmonella sp. densities remained below the Class A limit at all postdigestion sampling locations. Fecal-coliform densities were also below the Class A limit at postdigestion-sampling locations, except the truck-loading facility (phases I and II) and the farm for final use of the biosolids (phase II). Although federal regulations require one of the limits for either fecal coliforms or Salmonella sp. to be met, local regulations in Kern County, California, where the biosolids are land-applied, require compliance with both bacterial limits. Additional work identified dewatering, cooling of biosolids after the dewatering centrifuges, and contamination as possible factors in the rise in density of fecal coliforms. These results provided the basis for the full conversion of HTP to the Los Angeles continuous-batch, thermophilic-anaerobic-digestion process. During later phases of testing, this process was demonstrated to produce fully disinfected biosolids at the farm for land application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号