首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: Thoracic side airbags (tSABs) were integrated into the vehicle fleet to attenuate and distribute forces on the occupant's chest and abdomen, dissipate the impact energy, and move the occupant away from the intruding structure, all of which reduce the risk of injury. This research piece investigates and evaluates the safety performance of the airbag unit by cross-correlating data from a controlled collision environment with field data.

Method: We focus exclusively on vehicle–vehicle lateral impacts from the NHTSA's Vehicle Crash Test Database and NASS-CDS database, which are replicated in the controlled environment by the (crabbed) barrier impact. Similar collisions with and without seat-embedded tSABs are matched to each other and the injury risks are compared.

Results: Results indicated that dummy-based thoracic injury metrics were significantly lower with tSAB exposure (P <.001). Yet, when the controlled collision environment data were cross-correlated with NASS-CDS collisions, deployment of the tSAB indicated no association with thoracic injury (tho. MAIS 2+ unadjusted relative risk [RR] = 1.14; 90% confidence interval [CI], 0.80–1.62; tho. MAIS 3+ unadjusted RR = 1.12; 90% CI, 0.76–1.65).

Conclusion: The data from the controlled collision environment indicated an unequivocal benefit provided by the thoracic side airbag for the crash dummy; however, the real-world collisions demonstrate that no benefit is provided to the occupant. This has resulted from a noncorrelation between the crash test/dummy-based design taking the abstracting process too far to represent the real-world collision scenario.  相似文献   


2.
Objective: We studied the correlation between airbag deployment and eye injuries using 2 different data sets.

Methods: The registry of the Finnish Road Accident (FRA) Investigation Teams was analyzed to study severe head- and eyewear-related injuries. All fatal passenger car or van accidents that occurred during the years 2009–2012 (4 years) were included (n = 734). Cases in which the driver's front airbag was deployed were subjected to analysis (n = 409). To determine the proportion of minor, potentially airbag-related eye injuries, the results were compared to the data for all new eye injury patients (n = 1,151) recorded at the Emergency Clinic of the Helsinki University Eye Hospital (HUEH) during one year, from May 1, 2011, to April 30, 2012.

Results: In the FRA data set, the unbelted drivers showed a significantly higher risk of death (odds ratio [OR] = 5.89, 95% confidence interval [CI], 3.33–10.9, P = 2.6E-12) or of sustaining head injuries (OR = 2.50, 95% CI, 1.59–3.97, P = 3.8E-5). Only 4 of the 1,151 HUEH patients were involved in a passenger car accident. In one of the crashes, the airbag operated, and the belted driver received 2 sutured eye lid wounds and showed conjunctival sugillation. No permanent eye injuries were recorded during the follow-up. The calculated annual airbag-related eye injury incidence was less than 1/1,000,000 people, 4/100,000 accidents, and 4/10,000 injured occupants.

Conclusions: Airbag-related eye injuries occurred very rarely in car accidents in cases where the occupant survived and the restraint system was appropriately used. Spectacle use did not appear to increase the risk of eye injury in restrained occupants.  相似文献   


3.
Objective: The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model.

Methods: Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion.

Results: The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment.

Conclusions: The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.  相似文献   


4.
Objectives: The objective of this study was to identify factors that predict restraint use and optimal restraint use among children aged 0 to 13 years.

Methods: The data set is a national sample of police-reported crashes for years 2010–2014 in which type of child restraint is recorded. The data set was supplemented with demographic census data linked by driver ZIP code, as well as a score for the state child restraint law during the year of the crash relative to best practice recommendations for protecting child occupants. Analysis used linear regression techniques.

Results: The main predictor of unrestrained child occupants was the presence of an unrestrained driver. Among restrained children, children had 1.66 (95% confidence interval, 1.27, 2.17) times higher odds of using the recommended type of restraint system if the state law at the time of the crash included requirements based on best practice recommendations.

Conclusions: Children are more likely to ride in the recommended type of child restraint when their state's child restraint law includes wording that follows best practice recommendations for child occupant protection. However, state child restraint law requirements do not influence when caregivers fail to use an occupant restraint for their child passengers.  相似文献   


5.
Objectives: Motor vehicle crashes remain a leading cause of death in the United States (US). Thoracic aortic dissection due to blunt trauma remains a major injury mechanism, and up to 90% of these injuries result in death on the scene. The objective of this study is to understand the modern risk factors and etiology of fatal thoracic aortic injuries in the current US fleet.

Methods: Using a unique, linked, Fatality Analysis Reporting System (FARS) and Multiple Cause of Death (MCOD) database from 2000–2010, 144,169 drivers over 16 years of age who suffered fatal injuries were identified. The merged database provides an unparalleled fidelity for identifying thoracic aortic injuries due to motor vehicle accidents. Thoracic aortic injuries were defined by ICD-10 codes S250. Univariate and multivariate logistic regression models for presence of any thoracic aortic injuries were fitted. Age, gender, BMI weight categories, vehicle class, model year, crash type/direction, severity of crash damage, airbag deployment location, and seatbelt use, fatal injury codes, and location of injury were considered. Odds ratios (OR) and corresponding 95% confidence intervals (95%CI) are calculated.

Results: There were 2953 deaths (2.10%) related to thoracic aortic injuries that met the inclusion criteria. Nearside crashes were associated with an increased odds (OR = 1.42, 1.1-1.83), while rollover crashes (OR =.44,.29-.66) were associated with a reduced odds of fatal thoracic aortic injury. Using backward selection on the full multivariate model, the only significant model effects that remained were vehicle type, crash type, body region, and injury type.

Conclusions: The increased prevalence of fatal thoracic aortic injury in nearside crashes, increasing age, and vehicle type provide some insight into the current US fleet. Important factors, including model year, had significantly lower levels of the injury in univariate analysis, demonstrating the effect of safety improvements in newer model vehicles. Further study of this fatal injury is warranted, including comparisons of those who survive the injury.  相似文献   


6.
Objective: Statistics indicate that employees commuting or traveling as part of their work are overrepresented in workplace injury and death. Despite this, many organizations are unaware of the factors within their organizations that are likely to influence potential reductions in work-related road traffic injury.

Methods: This article presents a multilevel conceptual framework that identifies health investment as the central feature in reducing work-related road traffic injury. Within this framework, we explore factors operating at the individual driver, workgroup supervisor, and organizational senior management levels that create a mutually reinforcing system of safety.

Results: The health investment framework identifies key factors at the senior manager, supervisor, and driver levels to cultivating a safe working environment. These factors are high-performance workplace systems, leader–member exchange and autonomy, trust and empowerment, respectively. The framework demonstrates the important interactions between these factors and how they create a self-sustaining organizational safety system.

Conclusions: The framework aims to provide insight into the future development of interventions that are strategically aligned with the organization and target elements that facilitate and enhance driver safety and ultimately reduce work-related road traffic injury and death.  相似文献   


7.
Purpose: This is a study of the influence of an unbelted rear occupant on the risk of severe injury to the front seat occupant ahead of them in frontal crashes. It provides an update to earlier studies.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for severe injury (Maximum Abbreviated Injury Score [MAIS] 4+F) to belted drivers and front passengers in frontal crashes by the presence of a belted or unbelted passenger seated directly behind them or without a rear passenger. Frontal crashes were identified with GAD1 = F without rollover (rollover ≤ 0). Front and rear outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4+F was determined using the number of occupants with known injury status MAIS 0+F. Standard errors were determined.

Results: The risk for severe injury was 0.803 ± 0.263% for the driver with an unbelted left rear occupant and 0.100 ± 0.039% with a belted left rear occupant. The driver's risk was thus 8.01 times greater with an unbelted rear occupant than with a belted occupant (P <.001). With an unbelted right rear occupant behind the front passenger, the risk for severe injury was 0.277 ± 0.091% for the front passenger. The corresponding risk was 0.165 ± 0.075% when the right rear occupant was belted. The front passenger's risk was 1.68 times greater with an unbelted rear occupant behind them than a belted occupant (P <.001). The driver's risk for MAIS 4+F was highest when their seat was deformed forward. The risk was 9.94 times greater with an unbelted rear occupant than with a belted rear occupant when the driver's seat deformed forward. It was 13.4 ± 12.2% with an unbelted occupant behind them and 1.35 ± 0.95% with a belted occupant behind them.

Conclusions: Consistent with prior literature, seat belt use by a rear occupant significantly lowered the risk for severe injury to belted occupants seated in front of them. The reduction was greater for drivers than for front passengers. It was 87.5% for the driver and 40.6% for the front passenger. These results emphasize the need for belt reminders in all seating positions.  相似文献   


8.
Objective: The lower extremity of the occupant represents the most frequently injured body region in motor vehicle crashes. Knee airbags (KABs) have been implemented as a potential countermeasure to reduce lower extremity injuries. Despite the increasing prevalence of KABs in vehicles, the biomechanical interaction of the human lower extremity with the KAB has not been well characterized. This study uses computational models of the human body and KABs to explore how KAB design may influence the impact response of the occupant's lower extremities.

Methods: The analysis was conducted using a 50th percentile male occupant human body model with deployed KABs in a simplified vehicle interior. The 2 common KAB design types, bottom-deploy KAB (BKAB) and rear-deploy KAB (RKAB), were both included. A state-of-the-art airbag modeling technique, the corpuscular particle method, was adopted to represent the deployment dynamics of the unfolding airbags. Validation of the environment model was performed based on previously reported test results. The kinematic responses of the occupant lower extremities were compared under both KAB designs, 2 seating configurations (in-position and out-of-position), and 3 loading conditions (static, frontal, and oblique impacts). A linear statistical model was used to assess factor significance considering the impact responses of the occupant lower extremities.

Results: The presence of a KAB had a significant influence on the lower extremity kinematics compared to no KAB (P <.05) by providing early restraint and distributing contact force on the legs during airbag deployment. For in-position occupants, the KAB generally tended to decrease tibia loadings. The RKAB led to greater lateral motion of the legs compared to the BKAB, resulting in higher lateral displacement at the knee joint and abduction angle change (51.2 ± 21.7 mm and 15° ± 6.0°) over the dynamic loading conditions. Change in the seating position led to a significant difference in occupant kinematic and kinetic parameters (P <.05). For the out-of-position (forward-seated) occupant, the earlier contact between the lower extremity and the deploying KAB resulted in 28.4° ± 5.8° greater abduction, regardless of crash scenarios. Both KAB types reduced the axial force in the femur relative to no KAB. Overall, the out-of-position occupant sustained a raised axial force and bending moment of the tibia by 0.8 ± 0.2 kN and 21.1 ± 8.7 Nm regardless of restraint use.

Conclusions: The current study provided a preliminary computational examination on KAB designs based on a limited set of configurations in an idealized vehicle interior. Results suggested that the BKAB tended to provide more coverage and less leg abduction compared to the RKAB in oblique impact and/or the selected out-of-position scenario. An out-of-position occupant was associated with larger abduction and lower extremity loads over all occupant configurations. Further investigations are recommended to obtain a full understanding of the KAB performance in a more realistic vehicle environment.  相似文献   


9.
10.
Objective: A cyclist assumes various cyclic postures of the lower extremities while pushing the pedals in a rotary motion while pedaling. In order to protect cyclists in collisions, it is necessary to understand what influence these postures have on the global kinematics and injuries of the cyclist.

Method: Finite element (FE) analyses using models of a cyclist, bicycle, and car were conducted. In the simulations, the Total Human Model of Safety (THUMS) occupant model was employed as a cyclist, and the simulation was set up such that the cyclist was hit from its side by a car. Three representative postures of the lower extremities of the cyclist were examined, and the kinematics and injury risk of the cyclist were compared to those obtained by a pedestrian FE model. The risk of a lower extremity injury was assessed based on the knee shear displacement and the tibia bending moment.

Results: When the knee position of the cyclist was higher than the hood leading edge, the hood leading edge contacted the leg of the cyclist, and the pelvis slid over the hood top and the wrap-around distance (WAD) of the cyclist's head was large. The knee was shear loaded by the hood leading edge, and the anterior cruciate ligament (ACL) ruptured. The tibia bending moment was less than the injury threshold. When the cyclist's knee position was lower than the hood leading edge, the hood leading edge contacted the thigh of the cyclist, and the cyclist rotated with the femur as the pivot point about the hood leading edge. In this case, the head impact location of the cyclist against the car was comparable to that of the pedestrian collision. The knee shear displacement and the tibia bending moment were less than the injury thresholds.

Conclusion: The knee height of the cyclist relative to the hood leading edge affected the global kinematics and the head impact location against the car. The loading mode of the lower extremities was also dependent on the initial positions of the lower extremities relative to the car structures. In the foot up and front posture, the knee was loaded in a lateral shear direction by the hood leading edge and as a result the ACL ruptured. The bicycle frame and the struck-side lower extremity interacted and could influence the loadings on lower extremities.  相似文献   


11.
12.
Objective: Understanding pedestrian injury trends at the local level is essential for program planning and allocation of funds for urban planning and improvement. Because we hypothesize that local injury trends differ from national trends in significant and meaningful ways, we investigated citywide pedestrian injury trends to assess injury risk among nationally identified risk groups, as well as identify risk groups and locations specific to Baltimore City.

Methods: Pedestrian injury data, obtained from the Baltimore City Fire Department, were gathered through emergency medical services (EMS) records collected from January 1 to December 31, 2014. Locations of pedestrian injuries were geocoded and mapped. Pearson's chi-square test of independence was used to investigate differences in injury severity level across risk groups. Pedestrian injury rates by age group, gender, and race were compared to national rates.

Results: A total of 699 pedestrians were involved in motor vehicle crashes in 2014—an average of 2 EMS transports each day. The distribution of injuries throughout the city did not coincide with population or income distributions, indicating that there was not a consistent correlation between areas of concentrated population or concentrated poverty and areas of concentrated pedestrian injury. Twenty percent (n = 138) of all injuries occurred among children age ≤14, and 22% (n = 73) of severe injuries occurred among young children. The rate of injury in this age group was 5 times the national rate (Incident Rate Ratio [IRR] = 4.81, 95% confidence interval [CI], [4.05, 5.71]). Injury rates for adults ≥65 were less than the national average.

Conclusions: As the urban landscape and associated pedestrian behavior transform, continued investigation of local pedestrian injury trends and evolving public health prevention strategies is necessary to ensure pedestrian safety.  相似文献   


13.
Objective: Though it is common to refer to age-specific groups (e.g., children, adults, elderly), smooth trends conditional on age are mainly ignored in the literature. The present study examines the pedestrian injury risk in full-frontal pedestrian-to–passenger car accidents and incorporates age—in addition to collision speed and injury severity—as a plug-in parameter.

Methods: Recent work introduced a model for pedestrian injury risk functions using explicit formulae with easily interpretable model parameters. This model is expanded by pedestrian age as another model parameter. Using the German In-Depth Accident Study (GIDAS) to obtain age-specific risk proportions, the model parameters are fitted to the raw data and then smoothed by broken-line regression.

Results: The approach supplies explicit probabilities for pedestrian injury risk conditional on pedestrian age, collision speed, and injury severity under investigation. All results yield consistency to each other in the sense that risks for more severe injuries are less probable than those for less severe injuries. As a side product, the approach indicates specific ages at which the risk behavior fundamentally changes. These threshold values can be interpreted as the most robust ages for pedestrians.

Conclusions: The obtained age-wise risk functions can be aggregated and adapted to any population. The presented approach is formulated in such general terms that in can be directly used for other data sets or additional parameters; for example, the pedestrian's sex. Thus far, no other study using age as a plug-in parameter can be found.  相似文献   


14.
Objectives: Due to limitations of classic imaging approaches, the internal response of abdominal organs is difficult to observe during an impact. Within the context of impact biomechanics for the protection of the occupant of transports, this could be an issue for human model validation and injury prediction.

Methods: In the current study, a previously developed technique (ultrafast ultrasound imaging) was used as the basis to develop a protocol to observe the internal response of abdominal organs in situ at high imaging rates. The protocol was applied to 3 postmortem human surrogates to observe the liver and the colon during impacts delivered to the abdomen.

Results: The results show the sensitivity of the liver motion to the impact location. Compression of the colon was also quantified and compared to the abdominal compression.

Conclusions: These results illustrate the feasibility of the approach. Further tests and comparisons with simulations are under preparation.  相似文献   


15.
Objective: Although advanced restraint systems, such as seat belt pretensioners and load limiters, can provide improved occupant protection in crashes, such technologies are currently not utilized in military vehicles. The design and use of military vehicles presents unique challenges to occupant safety—including differences in compartment geometry and occupant clothing and gear—that make direct application of optimal civilian restraint systems to military vehicles inappropriate. For military vehicle environments, finite element (FE) modeling can be used to assess various configurations of restraint systems and determine the optimal configuration that minimizes injury risk to the occupant. The models must, however, be validated against physical tests before implementation. The objective of this study was therefore to provide the data necessary for FE model validation by conducting sled tests using anthropomorphic test devices (ATDs). A secondary objective of this test series was to examine the influence of occupant body size (5th percentile female, 50th percentile male, and 95th percentile male), military gear (helmet/vest/tactical assault panels), seat belt type (3-point and 5-point), and advanced seat belt technologies (pretensioner and load limiter) on occupant kinematics and injury risk in frontal crashes.

Methods: In total, 20 frontal sled tests were conducted using a custom sled buck that was reconfigurable to represent both the driver and passenger compartments of a light tactical military vehicle. Tests were performed at a delta-V of 30 mph and a peak acceleration of 25 g. The sled tests used the Hybrid III 5th percentile female, 50th percentile male, and 95th percentile male ATDs outfitted with standard combat boots and advanced combat helmets. In some tests, the ATDs were outfitted with additional military gear, which included an improved outer tactical vest (IOTV), IOTV and squad automatic weapon (SAW) gunner with a tactical assault panel (TAP), or IOTV and rifleman with TAP. ATD kinematics and injury outcomes were determined for each test.

Results: Maximum excursions were generally greater in the 95th percentile male compared to the 50th percentile male ATD and in ATDs wearing TAP compared to ATDs without TAP. Pretensioners and load limiters were effective in decreasing excursions and injury measures, even when the ATD was outfitted in military gear.

Conclusions: ATD injury response and kinematics are influenced by the size of the ATD, military gear, and restraint system. This study has provided important data for validating FE models of military occupants, which can be used for design optimization of military vehicle restraint systems.  相似文献   


16.
Objective: This study aims to investigate the contributing factors to secondary collisions and the effects of secondary collisions on injury severity levels. Manhattan, which is the most densely populated urban area of New York City, is used as a case study. In Manhattan, about 7.5% of crash events become involved with secondary collisions and as high as 9.3% of those secondary collisions lead to incapacitating and fatal injuries.

Methods: Structural equation models (SEMs) are proposed to jointly model the presence of secondary collisions and injury severity levels and adjust for the endogeneity effects. The structural relationship among secondary collisions, injury severity, and contributing factors such as speeding, alcohol, fatigue, brake defects, limited view, and rain are fully explored using SEMs. In addition, to assess the temporal effects, we use time as a moderator in the proposed SEM framework.

Results: Due to its better performance compared with other models, the SEM with no constraint is used to investigate the contributing factors to secondary collisions. Thirteen explanatory variables are found to contribute to the presence of secondary collisions, including alcohol, drugs, inattention, inexperience, sleep, control disregarded, speeding, fatigue, defective brakes, pedestrian involved, defective pavement, limited view, and rain. Regarding the temporal effects, results indicate that it is more likely to sustain secondary collisions and severe injuries at night.

Conclusions: This study fully investigates the contributing factors to secondary collisions and estimates the safety effects of secondary collisions after adjusting for the endogeneity effects and shows the advantage of using SEMs in exploring the structural relationship between risk factors and safety indicators. Understanding the causes and impacts of secondary collisions can help transportation agencies and automobile manufacturers develop effective injury prevention countermeasures.  相似文献   


17.
Purpose: This is a study that updates earlier research on the influence of a front passenger on the risk for severe driver injury in near-side and far-side impacts. It includes the effects of belt use by the driver and passenger, identifies body regions involved in driver injury, and identifies the sources for severe driver head injury.

Methods: 1997–2015 NASS-CDS data were used to investigate the risk for Maximum Abbreviated Injury Scale (MAIS) 4 + F driver injury in near-side and far-side impacts by front passenger belt use and as a sole occupant in the driver seat. Side impacts were identified with GAD1 = L or R without rollover (rollover ≤ 0). Front-outboard occupants were included without ejection (ejection = 0). Injury severity was defined by MAIS and fatality (F) by TREATMNT = 1 or INJSEV = 4. Weighted data were determined. The risk for MAIS 4 + F was determined using the number of occupants with known injury status MAIS 0 + F. Standard errors were determined.

Results: Overall, belted drivers had greater risks for severe injury in near-side than far-side impacts. As a sole driver, the risk was 0.969 ± 0.212% for near-side and 0.313 ± 0.069% for far-side impacts (P < .005). The driver's risk was 0.933 ± 0.430% with an unbelted passenger and 0.596 ± 0.144% with a belted passenger in near-side impacts. The risk was 2.17 times greater with an unbelted passenger (NS). The driver's risk was 0.782 ± 0.431% with an unbelted passenger and 0.361% ± 0.114% with a belted passenger in far-side impacts. The risk was 1.57 times greater with an unbelted passenger (P < .10). Seat belt use was 66 to 95% effective in preventing MAIS 4 + F injury in the driver. For belted drivers, the head and thorax were the leading body regions for Abbreviated Injury Scale (AIS) 4+ injury. For near-side impacts, the leading sources for AIS 4+ head injury were the left B-pillar, roof, and other vehicle. For far-side impacts, the leading sources were the other occupant, right interior, and roof (8.5%).

Conclusions: Seat belt use by a passenger lowered the risk of severe driver injury in side impacts. The reduction was 54% in near-side impacts and 36% in far-side impacts. Belted drivers experienced mostly head and thoracic AIS 4+ injuries. Head injuries in the belted drivers were from contact with the side interior and the other occupant, even with a belted passenger.  相似文献   


18.
Objective: The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions.

Methods: The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.S. New Car Assessment Program (U.S.-NCAP) and 3 extra per model with high-intensity braking. The 4 scenarios were no precollision system (no PCS), forward collision warning (FCW), FCW with prebraking assist (FCW+PBA), and FCW and PBA with autonomous precrash braking (FCW + PBA + PB). The baseline ΔV was 17, 34, and 56.4 kph for median, severe, and U.S.-NCAP scenarios, respectively, and were based on crash reconstructions from NASS/CDS. Pulses were then developed based on the assumed precrash systems equipped. Restraint properties and the generic pulse used were based on literature.

Results: In median crash severity cases, little to no risk (<10% risk for Abbreviated injury Scale [AIS] 3+) was found for all injury measures for both models. In the severe set of cases, little to no risk for AIS 3+ injury was also found for all injury measures. In NCAP cases, highest risk was typically found with No PCS and lowest with FCW + PBA + PB. In the higher intensity braking cases (1.0–1.4 g), head injury criterion (HIC), brain injury criterion (BrIC), and chest deflection injury measures increased with increased braking intensity. All other measures for these cases tended to decrease. The ATD also predicted and trended similar to the human body models predictions for both the median, severe, and NCAP cases. Forward excursion for both models decreased across median, severe, and NCAP cases and diverged from each other in cases above 1.0 g of braking intensity.

Conclusions: The addition of precrash systems simulated through reduced precrash speeds caused reductions in some injury criteria, whereas others (chest deflection, HIC, and BrIC) increased due to a modified occupant position. The human model and ATD models trended similarly in nearly all cases with greater risk indicated in the human model. These results suggest the need for integrated safety systems that have restraints that optimize the occupant's position during precrash braking and prior to impact.  相似文献   


19.
Objective: The objective of this study was to investigate the effects of a sound warning system on the frequency of trespassing at 2 pilot test sites in Finland.

Methods: The effect of automatic prerecorded sound warning on the prevention of railway trespassing was evaluated based on observations at 2 test sites in Finland. At both sites an illegal footpath crossed the railway, and the average daily number of trespassers before implementation of the measures was about 18 at both sites.

Results: The results showed that trespassing was reduced at these sites by 18 and 44%, respectively. Because of the lack of proper control sites, it is possible that the real effects of the measure are somewhat smaller.

Conclusions: The current study concludes that automatic sound warning may be efficient and cost effective at locations where fencing is not a viable option. However, it is not likely to be a cost-effective panacea for all kinds of sites where trespassing occurs, especially in countries like Finland where trespassing is scattered along the railway network rather than concentrated to a limited number of sites.  相似文献   


20.
Objective: Increased numbers of people riding pedal cycles have led to a greater focus on pedal cycle safety. The aim of this article is to explore factors that are associated with fatal and a small number of serious-injury pedal cyclist crashes involving trucks that occurred in London between 2007 and 2011.

Methods: Data were collected from police collision files for 53 crashes, 27 of which involved a truck (≥3.5 tonnes) and a pedal cycle. A systematic case review approach was used to identify the infrastructure, vehicle road user, and management factors that contributed to these crashes and injuries and how these factors interacted.

Results: Trucks turning left conflicting with pedal cyclists traveling straight ahead was a common crash scenario. Key contributory factors identified included the pedal cyclists not being visible to the truck drivers, road narrowing, and inappropriate positioning of pedal cyclists.

Conclusions: Crashes involving trucks and pedal cyclists are complex events that are caused by multiple interacting factors; therefore, multiple measures are required to prevent them from occurring.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号