首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 843 毫秒
1.
SBR快速实现短程硝化及影响因素   总被引:5,自引:0,他引:5  
基于建立的序批式反应器(SBR),探索实现城市生活污水短程硝化的主要控制因素。研究结果表明,废水温度维持在(30±1)℃、p H值为7.8~8.2的条件下,采用间歇曝气的运行方式,仅驯化培养29 d,成功实现短程硝化,亚硝氮积累率为95%左右。通过对比发现,间歇曝气方式优于连续曝气方式,间歇曝气能有效地将溶解氧(DO)浓度控制在1.0mg/L以下,从而有利于进行短程硝化反应。此外,温度和p H可以影响亚硝氮的积累效果;当温度在25~35℃、进水p H为7.8~8.2时,亚硝氮的积累情况较好,积累率在91%以上。  相似文献   

2.
研究不同曝气方式下亚硝化的实现以及基质浓度、曝气频率和温度对NO-2-N积累效果的影响。以实际污泥脱水液为研究对象,控制进水NH+4-N浓度在50~80 mg/L范围内,温度为27℃,pH值为7.8~8.2,DO浓度为0.5~1.0mg/L,分别采用连续曝气和间歇曝气2种方式启动SBR亚硝化反应器,并考察了在不同基质浓度、曝气频率和温度条件下NO-2-N累积情况。实验研究结果表明,经过40 d左右的运行,在2种不同曝气方式下SBR均成功实现了亚硝化,稳定运行阶段,NO-2-N积累率分别达到95%和85%。经SEM扫描电镜观察发现,在驯化成熟的活性污泥中,亚硝化细菌多呈球状和杆状,大小不同,外形饱满。当进水氨氮浓度小于200 mg/L,曝气频率为曝气15 min/停曝15 min,温度为27℃时,NO-2-N积累效果最佳,平均积累率可达90%以上。间歇曝气可以有效促进亚硝化细菌富集,有利于实现较高浓度的NO-2-N积累。基质浓度、曝气频率和温度对NO-2-N积累效果的影响显著。  相似文献   

3.
基于DO控制实现SBR短程硝化过程   总被引:1,自引:0,他引:1  
采用序批式反应器(SBR)处理模拟氨氮废水,研究了固定供氧模式下氨氮降解过程和溶解氧变化规律,并对DO控制实现短程硝化机理进行了探讨.实验结果表明,当DO<1 mg/L时,体系产生亚硝酸盐积累,当亚硝化反应结束后,DO出现跃升现象,并且pH值对短程硝化有一定影响,充足的碱度和较高的pH值有利于建立以DO为控制参数实现短程硝化过程控制.短程硝化启动后,亚硝酸盐积累率达90%以上,并且经过度曝气5d后,系统仍保持稳定运行.  相似文献   

4.
在SBR反应器中对DO和pH值在短程硝化和半亚硝化过程中的作用进行试验研究,结果表明,控制低DO和适宜的pH值在短程硝化过程中起着重要的作用.本试验条件下,当DO为0.5~1.0 mg/L、pH值为7.5~8.0时,在SBR反应器中很容易实现短程硝化;当DO>0.3 mg/L时,DO越低,出水NO2--N积累率越高;当pH值>6.8时,不会影响系统NO2--N积累的稳定性.另外,研究结果还表明,通过控制DO和pH值可以实现半亚硝化.本试验条件下,当进水氨氮浓度为120 mg/L时,控制DO为0.3~0.4 mg/L可实现出水半亚硝化;当进水氨氮浓度为200 mg/L时,控制DO为0.5~0.6 mg/L或pH值为6.8也可以实现出水半亚硝化.  相似文献   

5.
DO和pH值在短程硝化中的作用   总被引:16,自引:0,他引:16  
在SBR反应器中对DO和pH值在短程硝化和半亚硝化过程中的作用进行试验研究,结果表明,控制低DO和适宜的pH值在短程硝化过程中起着重要的作用。本试验条件下。当DO为0.5~1.0mg/L、pH值为7.5—8.0时。在SBR反应器中很容易实现短程硝化;当DO〉0.3mg/L时,DO越低,出水NO2^-N积累率越高;当pH值〉6.8时,不会影响系统NO2^-N积累的稳定性。另外,研究结果还表明,通过控制DO和pH值可以实现半亚硝化。本试验条件下,当进水氨氮浓度为120mg/L时,控制DO为0.3—0.4mg/L可实现出水半亚硝化;当进水氨氮浓度为200mg/L时,控制DO为0.5—0.6mg/L或pH值为6.8也可以实现出水半亚硝化。  相似文献   

6.
实时控制SBR系统中的短程硝化反硝化   总被引:3,自引:1,他引:2  
以人工模拟高氨氮废水为研究对象,采用循环间歇式曝气方式,以溶解氧浓度(DO)和pH值为过程控制参数,对SBR系统进行实时控制、全程跟踪.根据此过程中COD、NH4 -N、NO2--N和NO3--N 4项水质指标的变化情况,研究SBR系统中的短程硝化反硝化工艺.实验结果表明,在短程硝化反硝化工艺中,采用较高曝气量,并且在曝气过程中用DO和pH值作为过程控制参数是可行的.  相似文献   

7.
短程硝化的实现可推动能源节约型脱氮工艺的应用.通过阐述间歇曝气策略实现短程硝化的机理,分析了应用间歇曝气策略实例中的运行参数,总结了 DO协同缺氧时长分别在单独短程硝化工艺、短程硝化-反硝化(PN/D)工艺以及短程硝化-厌氧氨氧化(PN/A)工艺中的影响效果,如对功能菌活性和系统脱氮效率的影响;提出了以功能菌种、污泥存...  相似文献   

8.
为了实现主流的短程硝化反硝化和厌氧氨氧化,设计了基于pH-DO和阀ON-OFF间歇曝气的在线控制系统,搭建了中试级别的短程硝化SBR,在高DO条件下基于城市生活污水恢复种泥活性后,加入反硝化稳定短程,最后接入厌氧氨氧化滤池实现全过程自养脱氮。将脱氮率、NO-2-N积累率等作为考察指标,研究了系统的启动过程和稳定性。结果表明:控制SBR(sequencing batch reactor)中DO=2~2.5 mg·L~(-1)、HRT=8~10 h、SRT=4~5 d、T=25℃,启动恢复3个月后,系统能保持90%以上的NO-2-N积累率、NO-2-N/NH+4-N=0.96±0.18;短程硝化反硝化能达到50%左右的NH+4-N去除率,60%左右的TIN去除率;短程硝化接厌氧氧氨氧化能保证90%左右的NH+4-N去除率和TIN去除率,出水达一级A标准。由实验结果分析,系统在高DO条件下能恢复短程硝化污泥的活性,基于pH-DO和阀ON-OFF间歇曝气的在线控制系统稳定性高,能保证短程硝化系统的稳定运行;恢复活性后,后接厌氧氨氧化滤池能实现中试级别的全过程自养脱氮。  相似文献   

9.
短程硝化是短程生物脱氮工艺的前提与难点,通过曝气控制实现短程硝化具有操作灵活、成本低等优点.本文采用序批式活性污泥反应器,对比分析了高氧持续曝气、间歇曝气和低氧持续曝气3种曝气方式实现碳捕获预处理黑水短程硝化的效果和微生物群落结构的差异.结果表明:相对于高氧持续曝气和间歇曝气,低氧持续曝气工况亚硝态氮累积率(NAR)更...  相似文献   

10.
采用SBR装置,针对高氨废水的特点,在高氨条件下,以高氨低氧为转化手段,实现高氨废水短程硝化过程中亚硝化菌的驯化与积累。控制温度为28~31℃,曝气量为15~60 L/h,pH控制在7.8~8.2的条件下连续运行78 d。实验结果表明,运行11 d后实现了短程硝化,从11 d至78 d属于系统氨氮负荷提高期。在运行过程中,氨氮污泥负荷从开始的0.023 kg/(kg·d)逐步上升为0.3 kg/(kg·d),最高时达到0.34 kg/(kg·d),此时氨氮去除率仍维持90%以上。为观察驯化后短程硝化菌的形态,取驯化好的污泥进行电镜扫描,结果表明,污泥中的细菌形态主要以球状菌为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号