首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
象山港网箱养殖对海域环境的影响及其养殖环境容量研究   总被引:9,自引:0,他引:9  
以象山港海域的潮流模型和物质输运模型为基础,建立了各网箱养殖区的氮、磷污染物排放量与研究海域水质之间的响应关系,对该海域的养殖污染状况进行了模拟,讨论了该海域的网箱养殖环境容量.结果表明,象山港内的氮、磷浓度在养殖区密集的港顶海域超出一类水质标准;该海域的氮、磷养殖环境容量分别为670.74t/a和77.32t/a.目前,象山港内各网箱养殖区的污染物排放量已超出其容量,需进行削减.  相似文献   

2.
Existing evidence indicated that dichlorodiphenyltrichloroethane (DDT)-containing antifouling paints were an important source of DDT residues to mariculture zones. However, the magnitude of the impact on aquafarming environment has remained largely unknown. In the present study, the concentrations of DDT and its metabolites (designated as DDXs) were determined in harbor sediment and antifouling paint samples collected from a typical mariculture zone in South China. Compositional and concentration correlation analyses implicated the DDT-containing antifouling paints for fishing boat maintenance as an important source of DDT in the mariculture zone. The annual emission of DDXs to the study region was estimated at 0.58 tons/yr. Furthermore, a comparison of the expected DDT loadings in pelagic fish and field measurements indicated that fish feed especially trash fish was a major source of DDTs in the fish body. Nevertheless, the use of DDT-containing antifouling paints should be limited to prevent further deterioration in aquafarming environment.  相似文献   

3.
Eero Asmala  Laura Saikku 《Ambio》2010,39(2):126-135
Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.  相似文献   

4.
GOAL, SCOPE AND BACKGROUND: Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compound in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of ever-increasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. MAIN FEATURES: China is the world's largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. RESULTS: Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. DISCUSSION: The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites' conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. CONCLUSIONS: Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. RECOMMENDATIONS AND PERSPECTIVES: The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application.  相似文献   

5.
Goal, Scope and Background  Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compounds in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of everincreasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. Main Features  China is the world’s largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. Results  Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. Discussion  The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites’ conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. Conclusions  Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. Recommendations and Perspectives  The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application. ESS-Submission Editor: Dr. Ding Wang (wangd@ihb.ac.cn)  相似文献   

6.
在相关养殖容量研究的基础上,提出了养殖环境容量和可持续养殖容量的概念和内涵.以哑铃湾网箱养殖为例,建立了考虑时间累积效应后的养殖环境容量和考虑了社会、经济和环境综合效益后的可持续养殖容量计算模型.估算了在10年时段内哑铃湾网箱养殖环境容量和可持续养殖容量.结果表明,哑铃湾网箱养殖最优环境容量为每年4.11万箱,可持续养殖容量为每年3.45万箱.  相似文献   

7.
Phosphorus (P) is the limiting nutrient in freshwater primary production, and excessive levels cause premature eutrophication. P levels in aquaculture effluents are now tightly regulated. Increasing our understanding of waste P partitioning into soluble, particulate, and settleable fractions is important in the management of effluent P. When water supply is limited, dissolved oxygen concentration (DO) decreases below the optimum levels. Therefore, we studied effects of DO (6 and 10mg/L) and dietary P (0.7 and 1.0% P) on rainbow trout growth, P utilization, and effluent P partitioning. Biomass increased by 40% after 3 weeks. DO at 10mg/L significantly increased fish growth and feed efficiency, and increased the amount of P in the soluble fraction of the effluent. Soluble effluent P was greater in fish fed 1.0% P. DO increases fish growth and modulates P partitioning in aquaculture effluent.  相似文献   

8.
Fish is one of the most important nutrition sources for humanity. Contaminant exposure risk in fish farming will eventually deliver to the crowd through diet. China is the largest fish producing as well as exporting country, where mariculture plays an important role in fish production, especially in South China. Previous investigations indicated that a variety of compartments in farming areas of South China Sea were polluted by persistent organic pollutants, including DDT (dichlorodiphenyltrichloroethane) and its derivatives, some of which is designated as DDTs. In the present study, Hailing Bay and Daya Bay of Guangdong Province, China, were selected as the study sites and DDTs as the target compounds. A fish enrichment model was developed to assess the relative contributions of various pathways to the mass loadings of DDTs in the fish. Average concentrations (and concentration ranges) of DDTs in various environmental compartments of Hailing Bay and Daya Bay were included in modeling and analysis. Modeling results indicated that fish food and seawater contributed approximately the same proportions for the DDTs in maricultured fish. Antifouling paint was supposed to be the primary source of water DDTs in mariculture zone of Hailing Bay and Daya Bay, which contributed 69 % of the total DDTs to the mariculture water. We suggest that in order to protect people from consuming highly contaminated maricuture zone fish, the most effective and feasible methods are using environment-friendly antifouling paint and applying less polluted fish food in the fish reproduction process.  相似文献   

9.
The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp.  相似文献   

10.
Grigorakis K  Rigos G 《Chemosphere》2011,85(6):899-919
Aquatic farming has been considered, during the last decades, as the fastest growing food production industry powered by governmental and technological impulsion. Compensation for fisheries decline, creation of new jobs and source of financial windfall are the most important benefits. However, similar to most of the human food-production activities, aquaculture raised several issues related to the environmental welfare and consumer safety. An effort to record the aquaculture-environment and -human safety interactions with regard to the Mediterranean mariculture, is attempted herein. We focused on this geographical area due to its individualities in both the hydrological and physicochemical characteristics and the forms of aquaculture activities. The cage farming of euryhaline marine fish species and more recently of bluefin tuna and mollusk farming are the dominating aquaculture activities. The impacts of these activities to the environment, through wastes offloads, introduction of alien species, genetic interactions, disease transfer, release of chemicals, use of wild recourses, alterations of coastal habitats and disturbance of wildlife, are analytically considered. Also the consumer safety issues related to the farming are assessed, including generation of antibiotic-resistant microorganisms, contaminants transferred to humans though food chain and other hazards from consumption of aquacultured items. Within these, the major literature findings are critically examined and suggestions for scientific areas that need further development are made. The major tasks for future aquaculture development in this region are: (i) to ensure sustainability and (ii) to balance the risks to public or environmental health with the substantial economical benefits. In regard with monitoring, tools must be created or adapted to predict the environmental costs and estimate consumer impact. At a canonistic and legal basis, the establishment of appropriate legal guidelines and common policies from all countries involved should be mandatory.  相似文献   

11.
Effluent profile of commercially used low-phosphorus fish feeds   总被引:1,自引:0,他引:1  
Excess phosphorus (P) in aquaculture feeds contributes to the eutrophication of natural waters. While commercially available low-P (LP) fish feeds have been developed, there is uncertainty about their potential to reduce effluent P while maintaining fish growth relative to regular P (RP) feeds. We therefore simulated commercial aquaculture conditions and fed for 55 days rainbow trout (approximately 190 kg/raceway, n = 3 raceways/diet) RP (1.4% total P) and LP (1.0%) feeds then determined effluent P levels, fish growth, and feed costs. Excretions of fecal-P and soluble-P, but not particulate-P, in effluents were greater in RP than in LP ponds. Fish growth, bone-P and plasma-P were similar between diets, demonstrating that LP feeds can lower effluent P levels without compromising growth. Costs were 0.97 dollars/kg fish production for LP feeds, and 0.74 dollars/kg for RP. Because feed is the largest variable cost in commercial aquaculture, the use of LP feeds can significantly increase production costs.  相似文献   

12.
浮萍科植物是漂浮生长在水流相对平缓的湖泊河湾水面上植物类群,整个植株完全退化为一个呈圆形或椭圆形的叶状体,主要是通过根或叶状体从水中吸收所需的氮磷等各种营养物质.浮萍科植物的氮磷含量和生长速率高并可以耐受多种污水条件,因此这个类群是污水处理生态工程中重要的水生植物类群.以浮萍为主的污水处理系统已得到较多的研究和应用,这类系统最大特点是浮萍的生长可以大量吸收污水中的氮磷,从而具有较高的氮磷去除率,同时生成的生物量可多种方式利用.因此利用这类系统对污水进行氮磷的处理与转化,并将生成的浮萍生物量适当地资源化利用是未来的发展方向.  相似文献   

13.
浮萍植物在污水处理中的应用研究进展   总被引:15,自引:0,他引:15  
浮萍科植物是漂浮生长在水流相对平缓的湖泊河湾水面上植物类群,整个植株完全退化为一个呈圆形或椭圆形的叶状体,主要是通过根或叶状体从水中吸收所需的氮磷等各种营养物质。浮萍科植物的氮磷含量和生长速率高并可以耐受多种污水条件,因此这个类群是污水处理生态工程中重要的水生植物类群。以浮萍为主的污水处理系统已得到较多的研究和应用,这类系统最大特点是浮萍的生长可以大量吸收污水中的氮磷,从而具有较高的氮磷去除率,同时生成的生物量可多种方式利用。因此利用这类系统对污水进行氮磷的处理与转化,并将生成的浮萍生物量适当地资源化利用是未来的发展方向。  相似文献   

14.
Recently, it was observed that there is an increasing application of nanoparticles (NPs) in aquaculture. Manufacturers are trying to use nano-based tools to remove the barriers about waterborne food, growth, reproduction, and culturing of species, their health, and water treatment in order to increase aquaculture production rates, being the safe-by-design approach still unapplied. We reviewed the applications of NPs in aquaculture evidencing that the way NPs are applied can be very different: some are direclty added to feed, other to water media or in aquaculture facilities. Traditional toxicity data cannot be easily used to infer on aquaculture mainly considering short-term exposure scenarios, underestimating the potential exposure of aquacultured species. The main outputs are (i) biological models are not recurrent, and in the case, testing protocols are frequently different; (ii) most data derived from toxicity studies are not specifically designed on aquaculture needs, thus contact time, exposure concentrations, and other ancillary conditions do not meet the required standard for aquaculture; (iii) short-term exposure periods are investigated mainly on species of indirect aquaculture interest, while shrimp and fish as final consumers in aquaculture plants are underinvestigated (scarce or unknown data on trophic chain transfer of NPs): little information is available about the amount of NPs accumulated within marketed organisms; (iv) how NPs present in the packaging of aquacultured products can affect their quality remained substantially unexplored. NPs in aquaculture are a challenging topic that must be developed in the near future to assure human health and environmental safety.
Graphical abstract ?
  相似文献   

15.
Through a comparative analysis of prices in capture fisheries and aquaculture sectors, the objectives of this paper are a) to investigate three the trends in prices of forage catches to feed the aquaculture species, b) to analyze the amount of fish species need to feed aquaculture species in order to assess the level of efficiency in resource use, and c) to examine the degree of economic concentration either in wild-catch industry and aquaculture sectors. The results show that prices of cultivated species are higher than prices of the same species when harvested from the sea. We explain this fact by the interplay of three forces. First, the amount of wild fish to feed aquaculture species continues to improve over time. Second, the pressure of fishing activities has not been reduced since catches of most forage fishes are declining, which induce higher prices of capture species that feed aquaculture production. Third, the level of seafood market concentration is significantly higher in aquaculture than in wild catches, which generates higher prices in aquaculture.  相似文献   

16.
Contribution of fisheries and aquaculture to global food security is linked to increased fish consumption. Projections indicate that an additional 30–40 million tonnes of fish will be required by 2030. China leads global aquaculture production accounting for 60% in volume and 45% in value. Many changes in the Chinese aquaculture sector are occurring to strive towards attaining environmental integrity and prudent use of resources. We focus on changes introduced in freshwater aquaculture developments in China, the main source of food fish supplies. We bring forth evidence in support of the contention that Chinese freshwater aquaculture sector has introduced major paradigm changes such as prohibition of fertilisation in large water bodies, introduction of stringent standards on nutrients in effluent and encouragement of practices that strip nutrients among others, which will facilitate long-term sustainability of the sector.  相似文献   

17.
Expansion of aquaculture has increased concern over its environmental impact. The composition of effluents from intensive aquaculture is well documented, but few data on extensive aquaculture are available. During 12 draining operations, 523 water samples were collected downstream from six extensively-managed fishponds in northeastern France. Study ponds had surface areas of 2-620 ha and were managed for production of Cyprinids and Percids. Concentrations of total suspended solids, total phosphorus, and Kjeldahl nitrogen in effluents from the ponds were greatest during the final stage of draining. Loads of phosphorus were higher than those reported for effluents of more intensive aquaculture ponds in the USA, but the source of the potential pollutants was catchments and sediment rather than feeds and fertilizer. It will be necessary to reduce the water drawdown rate during the fishing stage and possibly implement other best management practices to prevent the TSS concentration from exceeding 1 g/L.  相似文献   

18.
Phosphorus management in Europe in a changing world   总被引:2,自引:0,他引:2  
Food production in Europe is dependent on imported phosphorus (P) fertilizers, but P use is inefficient and losses to the environment high. Here, we discuss possible solutions by changes in P management. We argue that not only the use of P fertilizers and P additives in feed could be reduced by fine-tuning fertilization and feeding to actual nutrient requirements, but also P from waste has to be completely recovered and recycled in order to close the P balance of Europe regionally and become less dependent on the availability of P-rock reserves. Finally, climate-smart P management measures are needed, to reduce the expected deterioration of surface water quality resulting from climate-change-induced P loss.  相似文献   

19.
Different types of food wastes, e.g., meats, bones, cereals, fruits, and vegetables, were collected from hotels in Hong Kong, mixed in different ratio, and processed into feed pellets (food wastes (FWs) A, B, and C) for feeding trials in aquaculture species. Grass carp fed with cereal-dominant feed (FW A) showed the best growth (in terms of specific growth rate, relative weight gain, and protein efficiency ratio), among all food waste feeds. However, the growth rates of food waste groups especially the meat product-contained feeds (FW B and FW C) were lower than the commercial feed, Jinfeng® 613 formulation (control). The results indicated that grass carp utilized plant proteins better than animal proteins and preferred carbohydrate as a major energy source than lipid. The high-lipid content in feed containing meat products was also a possible reason for hindering growth and resulted high body lipid. It is suggested that lipid should be removed in the preparation of food waste feed or further investigations by implementing supplements, e.g., enzymes in feed to enhance lipid or protein utilization by fish. This utilization of food waste could be an effective and practical way to deal with these wastes in this densely populated city.  相似文献   

20.
Biofilm responses to marine fish farm wastes   总被引:1,自引:0,他引:1  
The changes in the biofilm community due to organic matter enrichment, eutrophication and metal contamination derived from fish farming were studied. The biofilm biomass, polysaccharide content, trophic niche and element accumulation were quantified along an environmental gradient of fish farm wastes in two seasons. Biofilm structure and trophic diversity was influenced by seasonality as well as by the fish farm waste load. Fish farming enhanced the accumulation of organic carbon, nutrients, selenium and metals by the biofilm community. The accumulation pattern of these elements was similar regardless of the structure and trophic niche of the community. This suggests that the biofilm communities can be considered a reliable tool for assessing dissolved aquaculture wastes. Due to the ubiquity of biofilms and its wide range of consumers, its role as a sink of dissolved wastes may have important implications for the transfer of aquaculture wastes to higher trophic levels in coastal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号