首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Dahiya S  Shanwal AV  Hegde AG 《Chemosphere》2005,60(9):1253-1261
Zinc adsorption was studied in the soils of three nuclear power plant sites of India. 65Zn was used as a radiotracer to study the sorption characteristics of Zn(II). The sorption of zinc was determined at 25 and 45 degrees C at pH 7.8+/-0.2 in the solution of 0.01 M Ca(NO3)2 as supporting electrolyte. The sorption data was tested both in Freundlich and Langmuir isotherms and could be described satisfactorily. The effect of organic matter and other physico-chemical properties on the uptake of zinc was also studied in all the soil samples. The results showed that the cation exchange capacity, organic matter, pH and clay content were the main contributors to zinc sorption in these soils. The adsorption maximum was found to be higher in the soil on Kakarpara Atomic Power Plant sites soils having high organic matter and clay content. The zinc supply parameters of the soils are also discussed. In the desorption studies, the sequential extraction of the adsorbed zinc from soils showed that the diethylene triamine penta acetic acid extracted maximum amount of adsorbed zinc than CaCl2 and Mg(NO3)2. The zinc sorption on the soil and amount of zinc retention after extractants desorption shows a positively correlation with vermiculite and smectite mineral content present in the clay fraction of the soil. The amount desorbed by strong base (NaOH) and demineralised water was almost negligible from soils of all the sites, whereas the desorption by strong acid (HNO3) was 75-96% of the adsorbed zinc.  相似文献   

2.
Mustafa G  Singh B  Kookana RS 《Chemosphere》2004,57(10):1325-1333
The transport and bioavailability of cadmium is governed mainly by its adsorption-desorption reactions with minerals such as goethite--a common iron oxide mineral in variable charged and highly weathered tropical soils. Soil factors such as pH, temperature, solution Cd concentration, ionic strength and ageing affect Cd adsorption on goethite. The desorption behaviour of Cd from goethite at low concentrations is not fully understood. This study investigates the adsorption-desorption of Cd at low Cd concentrations (Cd adsorbed on goethite from 20 to 300 microM Cd solutions) in Na and Ca nitrate solutions of 0.03 M nominal ionic strengths. Synthetic goethite prepared by ageing a ferric hydroxide gel at high pH and room temperature was used for Cd adsorption and desorption studies. For desorption experiment 10 successive desorptions were made for the whole range of initial Cd concentrations (20-300 microM) in the presence of 0.01 M Ca(NO3)2 or 0.03 M NaNO3 solutions. Cadmium adsorption was found to be higher in Na+ than Ca2+ probably due to the competition of Ca2+ ions with Cd2+ ions for adsorption sites on the surfaces of goethite. The effect of index cation on Cd adsorption diminished with increase in pH from 5.0 to 6.0. Cadmium desorption decreased with increase in pH from 5.0 to 6.0 in both Na and Ca systems. After 10 successive desorptions with 0.03 M NaNO3 at the lowest initially adsorbed Cd approximately 45%, 20% and 7% of the adsorbed Cd was desorbed at pH 5.0, 5.5 and 6.0, respectively. The corresponding desorptions in the presence of 0.01 M Ca(NO3)2 were 49%, 22% and 8%, respectively. The Freundlich parameter, k, based on each progressive step of desorption at different adsorbed concentration increased with increasing desorption step, which may indicates that a fraction of Cd was resistant to desorption. Low Cd desorbability from goethite may be due to its specific adsorption and/or possibly as a result of Cd entrapment in the cracks or defects in goethite structure.  相似文献   

3.
Desorption of cadmium from goethite: effects of pH, temperature and aging   总被引:1,自引:0,他引:1  
Mustafa G  Kookana RS  Singh B 《Chemosphere》2006,64(5):856-865
Cadmium is perhaps environmentally the most significant heavy metal in soils. Bioavailability, remobilization and fate of Cd entering in soils are usually controlled by adsorption-desorption reactions on Fe oxides. Adsorption of Cd on soil colloids including Fe oxides has been extensively studied but Cd desorption from such soil minerals has received relatively little attention. Some factors that affect Cd adsorption on goethite include pH, temperature, aging, type of index cations, Cd concentrations, solution ionic strength and presence of organic and inorganic ions. This research was conducted to study the influence of pH, temperature and aging on Cd desorption from goethite. Batch experiments were conducted to evaluate Cd desorption from goethite with 0.01 M Ca(NO3)2. In these experiments Cd desorption was observed at 20, 40 and 70 degrees C in combination with aging for 16 h, 30, 90 and 180 d from goethite that adsorbed Cd from solutions containing initial Cd concentrations of 20, 80 and 180 microM. Following the adsorption step Cd desorption was measured by 15 successive desorptions after aging at various temperatures. At the lowest amount of initially adsorbed Cd and equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 17% with aging from 16 h to 180 d and the corresponding decrease at equilibrium pH 6.0 was from 32% to 3%. There was a substantial decrease in Cd desorption with increasing equilibration temperature. For example, in goethite with the lowest amount of initial adsorption at equilibrium pH 5.5, cumulative Cd desorption decreased from 71% to 31% with increase in temperature from 20 to 70 degrees C, even after 16 h. Dissolution of Cd adsorbed goethite in 1M HCl, after 15 successive desorptions with 0.01 M Ca(NO3)2, indicated that approximately 60% of the Cd was surface adsorbed. Overall, dissolution kinetics data revealed that 23% to 88% Cd could not be desorbed, which could possibly be diffused into the cracks and got entrapped in goethite crystals. At elevated temperature increased equilibrium solution pH favoured the formation of CaCO3 and CdCO3 which reasonably decreased Cd desorption. Cadmium speciation showed the formation of calcite and otavite minerals at 40 and 70 degrees C due to increase in pH (>9.5) during aging. X-ray diffraction analysis (XRD) of these samples also revealed the formation of CaCO3 at elevated temperatures with aging. While mechanisms such as Cd diffusion and/or entrapment into fissures and cracks in goethite structure with increase in temperature and aging are possible.  相似文献   

4.
Hong KM  Kim MS  Chung JG 《Chemosphere》2004,54(7):927-934
The adsorption experiment of nickel ion [Ni(II)] on gamma-type alumina by a differential bed reactor in aqueous solutions was investigated to determine the adsorption characteristics and overall adsorption rate. The adsorbed amount increased rapidly with pH from pH 2 to 6 and kept constant over pH 6. The adsorbed amount of Ni(II) increased with temperature from 20 to 50 degrees C. Correlation coefficients (R2) of Langmuir and Freundlich adsorption isotherms were 0.9268 and 0.9489, respectively, and Freundlich isotherm was more suitable for adsorption on gamma-type alumina than Langmuir isotherm.The overall adsorption rate of Ni(II) on gamma-type alumina at pH 6 by a differential bed rector was determined as follows: r = 68.77Ce(1.61) - 17.60qe(0.36). Al(III) ions in solutions were away from the alumina surface during the adsorption of Ni(II) and Al(III) concentration increased with an increasing Ni(II) adsorbed amount on alumina.  相似文献   

5.
Liang J  Xu R  Jiang X  Wang Y  Zhao A  Tan W 《Chemosphere》2007,67(10):1949-1955
The effect of arsenate on Cd(II) adsorption in two variable charge soils and the desorption of Cd(II) pre-adsorbed in the presence of arsenate were studied. The batch type experiments showed, the presence of arsenate led to increase in Cd(II) adsorption and the desorption of pre-adsorbed Cd(II). Further it was observed that the extent of adsorption and desorption of Cd(II) was greatly influenced by the initial concentrations of arsenate and Cd(II), the solution pH, and the nature of the soils. In general the increase in arsenate concentration and pH favored the uptake of Cd(II). Moreover, the arsenate concentration influenced more in Hyper-Rhodic Ferralsol than Rhodic Ferralsol at least for the Cd(II) adsorption/desorption. This may be due to the content of Fe/Al oxides in these soils. The larger the content of Fe/Al oxides, the more the adsorption of arsenate by the soil, hence greater the uptake of Cd(II). It can be assumed that the enhanced Cd(II) adsorption was mainly due to the increase in net negative surface charge of the soil induced by the adsorption of arsenate, because the presence of arsenate led to the decrease in zeta potential of these soil suspensions. The increase of electrostatically adsorbed Cd(II) was responsible for the increase in the desorption of Cd(II) pre-adsorbed in the presence of arsenate.  相似文献   

6.
Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent   总被引:5,自引:0,他引:5  
Wu X  Zhang Y  Dou X  Yang M 《Chemosphere》2007,69(11):1758-1764
A trimetal oxide was developed as a fluoride adsorbent by coprecipitation of Fe(II), Al(III) and Ce(IV) salt solutions with a molar ratio of 1:4:1 under alkaline condition. The material retained amorphous structure and maintained relatively stable fluoride adsorption performance at calcination temperatures lower than 600 degrees C. The optimum pH range for fluoride adsorption was 6.0-6.5 and the adsorbent also showed high defluoridation ability around pH 5.5-7.0, which is preferable for actual application. A high fluoride adsorption capacity of 178 mg g(-1) was acquired under an equilibrium fluoride concentration of 84.5 mg l(-1), adsorbent dose of 150 mg l(-1) and pH 7.0. The adsorption isotherm could be better described by the two-site Langmuir model than the one-site model, suggesting the existence of two types of active sites on the adsorbent surface. Coexistence of high concentrations of phosphate or arsenate only led to partial inhibition of fluoride adsorption, which further suggests the existence of heterogeneous adsorption sites. Sulfate and chloride did not affect fluoride adsorption, and nitrate influenced it only when the concentration of NO(3)(-)-N exceeded 50 mg l(-1). A high desorption efficiency of 97% was achieved by treating fluoride loaded Fe-Al-Ce oxide with NaOH solution at pH 12.2. A column experiment using the adsorbent fabricated into 1mm pellets was performed at an initial fluoride concentration of 5.5 mg l(-1), space velocity of 5h(-1) and pH of 5.8, and 2240 bed volumes were treated with the effluent fluoride under 1.0 mg l(-1).  相似文献   

7.
Balaji T  Yokoyama T  Matsunaga H 《Chemosphere》2005,59(8):1169-1174
An adsorption process for the removal of As(V) and As(III) was evaluated under various conditions using zirconium(IV) loaded chelating resin (Zr-LDA) with lysine-Nalpha,Nalpha diacetic acid functional groups. Arsenate ions strongly adsorbed in the pH range from 2 to 5, while arsenite was adsorbed between pH 7 and 10.5. The sorption mechanism is an additional complexation between arsenate or arsenite and Zr complex of LDA. Adsorption isotherm data could be well interpreted by Langmuir equation for As(V) at pH 4 and As(III) at pH 9 with a binding constant 227.93 and 270.47 dm3 mol(-1) and capacity constant 0.656 and 1.1843 mmol g(-1), respectively. Regeneration of the resin was carried out for As(V) using 1 M NaOH. Six adsorption/desorption cycles were performed without significant decrease in the uptake performance. Column adsorption studies showed that the adsorption of As(V) is more favorable compared to As(III), due to the faster kinetics of As(V) compared to As(III). Influence of the coexisting ions on the adsorption of As(V) and As(III) was studied. The applicability of the method for practical water samples was studied.  相似文献   

8.
To test the feasibility of the reuse of iron-rich sludge (IRS) produced from a coal mine drainage treatment plant for removing As(III) and As(V) from aqueous solutions, we investigated various parameters, such as contact time, pH, initial As concentration, and competing ions, based on the IRS characterization. The IRS consisted of goethite and calcite, and had large surface area and small particles. According to energy dispersive X-ray spectroscopy mapping results, As was mainly removed by adsorption onto iron oxides. The adsorption kinetic studies showed that nearly 70 % adsorption of As was achieved within 1 h, and the pseudo-second-order model well explained As sorption on the IRS. The adsorption isotherm results agreed with the Freundlich isotherm model, and the maximum adsorption capacities for As(III) and As(V) were 66.9 and 21.5 mg/g, respectively, at 293 K. In addition, the adsorption showed the endothermic character. At high pH or in the presence of phosphate, the adsorption of As was decreased. When the desorption experiment was conducted to reuse the IRS, 85 % As was desorbed with 1.0 N NaOH. In the column experiment, adsorbed As in real acid mine drainage was 43 % of the maximum adsorbed amount of As in the batch test. These results suggested that the IRS is an effective adsorbent for As and can be effectively applied for the removal of As in water and wastewater.  相似文献   

9.
A study was conducted to explore some of the basic processes of polychlorinated biphenyl (PCB) destruction by a new technology termed electrochemical peroxidation process (ECP). ECP represents an enhancement of the classic Fenton reaction (H2O2 + Fe2+) in which iron is electrochemically generated by steel electrodes. Focus was on the extent of adsorption of a mixture of Aroclor 1248 on steel electrodes in comparison to iron filings. Commercially available zero-valent iron filings rapidly adsorbed PCBs from an aqueous solution of Aroclor 1248. Within 4 h, all the PCBs were adsorbed at 1%, 5%, and 10% Fe0 (w/v) concentrations. Little difference in adsorption was found between acidic (2.3) and unamended solutions (pH 5.5), even though significant differences in iron oxidation state and Fe2+ concentrations were measured in solution. PCB adsorption also occurs on steel electrodes regardless of the pH or electric current applied (AC or DC), suggesting the combination of oxidizing (free radical-mediated reactions) and reducing (dechlorination reactions) iron-mediated degradation pathways may be possible. Extraction of the iron powder after 48 h of contact time yielded the progressive recovery of biphenyl with increasing Fe mass(from 0.4% to 3.5%) and changes of the PCB congener-specific pattern as a consequence of dechlorination. A variety of daughter congeners similar to those accumulated during anaerobic microbial dechlorination of Aroclor 1248 in contaminated sediments indicate preferential removal of meta- and para-chlorines.  相似文献   

10.
模拟酸雨对氧化锰吸附砷(Ⅲ)的解吸行为研究   总被引:1,自引:1,他引:0  
以合成的氧化锰为吸附剂研究了酸雨pH值、酸雨离子强度、解吸时间和解吸次数等因素对模拟酸雨解吸砷(Ⅲ)的影响。实验结果表明:氧化锰对砷(Ⅲ)吸附容量较大,等温平衡吸附量为:48.38 mg/g。模拟酸雨的pH值与离子强度对砷(Ⅲ)的解吸影响不大;解吸反应在90 min后基本达到平衡,平衡解吸量为2.69×10-2mg/g;随解吸次数的增加解吸量变化不大。氧化锰对砷(Ⅲ)的吸附主要是专性的配位吸附,吸附砷(Ⅲ)后难以被模拟酸雨解吸。  相似文献   

11.
The sorption of U(VI) onto low-grade metamorphic rock phyllite was modeled with the diffuse double layer model (DDLM) using the primary mineralogical constituents of phyllite, i.e. quartz, chlorite, muscovite, and albite, as input components, and as additional component, the poorly ordered Fe oxide hydroxide mineral, ferrihydrite. Ferrihydrite forms during the batch sorption experiment as a weathering product of chlorite. In this process, Fe(II), leached from the chlorite, oxidizes to Fe(III), hydrolyses and precipitates as ferrihydrite. The formation of ferrihydrite during the batch sorption experiment was identified by M?ssbauer spectroscopy, showing a 2.8% increase of Fe(III) in the phyllite powder. The ferrihydrite was present as Fe nanoparticles or agglomerates with diameters ranging from 6 to 25 nm, with indications for even smaller particles. These Fe colloids were detected in centrifugation experiments of a ground phyllite suspension using various centrifugal forces. The basis for the successful interpretation of the experimental sorption data of uranyl(VI) on phyllite were: (1) the determination of surface complex formation constants of uranyl with quartz, chlorite, muscovite, albite, and ferrihydrite in individual batch sorption experiments, (2) the determination of surface acidity constants of quartz, chlorite, muscovite, and albite obtained from separate acid-base titration, (3) the determination of surface site densities of quartz, chlorite, muscovite, and albite evaluated independently of each other with adsorption isotherms, and (4) the quantification of the secondary phase ferrihydrite, which formed during the batch sorption experiments with phyllite. The surface complex formation constants and the protolysis constants were optimized by using the experimentally obtained data sets and the computer code FITEQL. Surface site densities were evaluated from adsorption isotherms at pH 6.5. The uranyl(VI) sorption onto phyllite was accurately modeled with these newly determined constants and parameters of the main mineralogical constituents of phyllite and the secondary mineralization phase ferrihydrite. The modeling indicated that uranyl sorption to ferrihydrite clearly dominates uranyl sorption, showing the great importance of secondary iron phases for sorption studies.  相似文献   

12.
This study evaluates the behavior of coconut charcoal (AC) to adsorb Cr(VI), As(III), and Ni(II) in mono- and multicomponent (binary and ternary) systems. Batch experiments were carried out for mono- and multicomponent systems with varying metal ion concentrations to investigate the competitive adsorption characteristics. The adsorption kinetics followed the mechanism of the pseudo-second-order equation in both single and binary systems, indicating chemical sorption as the rate-limiting step of adsorption mechanism. Equilibrium studies showed that the adsorption of Cr(VI), As(III), and Ni(II) followed the Langmuir model and maximum adsorption capacities were found to be 5.257, 0.042, and 1.748 mg/g, respectively. In multicomponent system, As(III) and Ni(II) adsorption competed intensely, while Cr(VI) adsorption was much less affected by competition than As(III) and Ni(II). With the presence of Cr(VI), the adsorption capacities of As(III) and Ni(II) on AC were higher than those in single system and the metal sorption followed the order of Ni(II)?>?As(III)?>?Cr(VI). The results from the sequential adsorption–desorption cycles showed that AC adsorbent held good desorption and reusability.  相似文献   

13.
Fe(III)/Cr(III) hydroxide, a waste material from the fertilizer industry, has been used for the adsorption of Cr(VI) from aqueous solution, over a range of initial metal ion concentrations (5-30 mg litre(-1)), agitation times (1-180 min), adsorbent dosages (100-1200 mg per 50 ml), temperatures (24, 29 and 38 degrees C) and pH values (4.5-10). The adsorption of Cr(VI) increased with the initial concentration of Cr(VI) and with temperature. The process of uptake follows both the Langmuir and the Freundlich isotherm models. The applicability of Lagergren and empirical kinetic models has also been investigated. Almost quantitative removal of Cr(VI) at 10 mg litre(-1) in a 50-ml solution by 500 mg of adsorbent was found at an equilibrium pH of 5.6. The efficiency of chromium removal was also tested using wastewater from the chromium plating industry.  相似文献   

14.
Removal of arsenic(V) from aqueous solutions was evaluated with the following three different sorption materials: coal-based activated carbon 12 x 40 (activated carbon), iron(II) oxide (FeO)/activated carbon-H, and iron oxide. The apparent characteristics and physical chemistry performances of these adsorbents were investigated by X-ray diffraction, nitrogen adsorption, and scanning electronic microscope. Also, batch experiments for arsenic removal were performed, and the effects of pH value on arsenic(V) removal were studied. The results suggest that the main phases of the iron oxide surface are magnetite, maghemite, hematite, and goethite; fine and uniform iron oxide particles can cover activated carbon surfaces and affect the surface area or pore structures of activated carbon; adsorption kinetics obey a pseudo-first-order rate equation; and adsorption capacities of adsorbents are affected by the values of pH. The optimum value of pH for iron oxide lies in a narrow range between 4.0 and 5.5, and arsenic(V) removal by FeO/activated carbon-H is ideal and stable in the pH range 3 to 7, while activated carbon has the lowest adsorption capacity in the entire pH range. Also, the adsorption characteristics of FeO/activated carbon-H composites and virgin activated carbon match well the Langmuir adsorption model, while those of iron oxide fit well the Freundlich adsorption model.  相似文献   

15.
On the mechanistic modeling of As(III) adsorption on gibbsite   总被引:1,自引:0,他引:1  
Arsenite adsorption on gibbsite was examined as a function of pH, ionic strength (I) and contact time (t(C)). As(III) showed a weak affinity for gibbsite surface. The trends of pH=f(Gamma(ads)) curves have showed a marked deviation from a typical anion adsorption edge showing a maximum Gamma(ads) around pH approximately 8.2. The experimentally derived proton exchange ratio has always converged to zero when 0.26< summation operator [As(III)]<7 microM and 6.2相似文献   

16.
Wang J  Ban H  Teng X  Wang H  Ladwig K 《Chemosphere》2006,64(11):1892-1898
Many coal-fired power plants are implementing ammonia-based technologies to reduce NO(x) emissions. Excess ammonia in the flue gas often deposits on the coal fly ash. Ammonia can form complexes with many heavy metals and change the leaching characteristics of these metals. This research tends to develop a fundamental understanding of the ammonia impact on the leaching of some heavy metals, exemplified by Cu(II) and Cd(II), under different pH conditions. Batch results indicated that the adsorption is the main mechanism controlling Cu(II) and Cd(II) leaching, and high concentrations of ammonia (>5,000 mg/l) can increase the release of Cu(II) and Cd(II) in the alkaline pH range. Based on the chemical reactions among fly ash, ammonia, and heavy metal ion, a mathematical model was developed to quantify effects of pH and ammonia on metal adsorption. The adsorption constants (logK) of Cu(2+), Cu(OH)(+), Cu(OH)(2), and Cu(NH(3))(m)(2+) for the fly ash under investigation were respectively 6.0, 7.7, 9.6, and 2.9. For Cd(II), these constants were respectively 4.3, 6.9, 8.8, and 2.6. Metal speciation calculations indicated that the formation of less adsorbable metal-ammonia complexes decreased metal adsorption, therefore enhanced metal leaching.  相似文献   

17.
In this study, magnetic polydivinylbenzene latex particles MPDVB with a core-shell structure were tested for the removal of bisphenol A (BPA), copper Cu(II), lead Pb(II), and zinc Zn(II) from aqueous solutions by a batch-adsorption technique. The effect of different parameters, such as initial concentration of pollutant, contact time, adsorbent dose, and initial pH solution on the adsorption of the different adsorbates considered was investigated. The adsorption of BPA, Cu(II), Pb(II), and Zn(II) was found to be fast, and the equilibrium was achieved within 30 min. The pH 5–5.5 was found to be the most suitable pH for metal removal. The presence of electrolytes and their increasing concentration reduced the metal adsorption capacity of the adsorbent. Whereas, the optimal pH for BPA adsorption was found 7, both hydrogen bonds and π–π interaction were thought responsible for the adsorption of BPA on MPDVB. The adsorption kinetics of BPA, Cu(II), Pb(II), and Zn(II) were found to follow a pseudo-second-order kinetic model. Equilibrium data for BPA, Cu(II), Pb(II), and Zn(II) adsorption were fitted well by the Langmuir isotherm model. Furthermore, the desorption and regeneration studies have proven that MPDVB can be employed repeatedly without impacting its adsorption capacity.  相似文献   

18.
Jung Y  Choi J  Lee W 《Chemosphere》2007,68(10):1968-1975
The reduction of Cr(VI) to Cr(III) by magnetite in the presence of added Fe(II) was characterized through batch kinetic experiments and the effect of Fe(II) addition and pH were investigated in this study. The addition of Fe(II) into magnetite suspension improved the reductive capacity of magnetite. Eighty percent of Cr(VI) was reduced by magnetite (6.5 g l(-1)) with Fe(II) (80 mg l(-1)) within 1 h, while 60% of Cr(VI) was removed by magnetite only. However, the extent of improved reductive capacity of magnetite with Fe(II) was less than that predicted by the summation of each reduction capacity of magnetite and Fe(II). The reduction of Cr(VI) in the magnetite suspension with Fe(II) increased with the increase of molar ratio of Fe(II) to Cr(VI) (0.6, 1, 1.5, 2.3) in the range of 0-2.3 and with the decrease of pH in the range of pH 8.0-5.5. The speciation of chromium, iron, and oxygen on the surface of magnetite was investigated by X-ray photoelectron spectroscopy. Cr 2p3/2, Fe 2p3/2, and O 1s peaks were mainly observed at 576.7 and 577.8 eV, at 711.2 eV, and at 530.2 and 531.4 eV, respectively. The results indicates that Cr(III) and Fe(III) were the dominant species on the surface of magnetite after reaction and that the dominant species covered the magnetite surface and formed metal (oxy)hydroxide.  相似文献   

19.
In this study, the removal of Cr(III) and Cu(II) from contaminated wastewaters by rice husk, as an organic solid waste, was investigated. Experiments were performed to investigate the influence of wastewater initial concentration, pH of solution, and contact time on the efficiency of Cr(III) and Cu(II) removal. The results indicated that the maximum removal of Cr(III) and Cu(II) occurred at pH 5–6 by rice husk and removal rate increased by increased pH from 1 to 6. It could be concluded that the removal efficiency was enhanced by increasing wastewater initial concentration in the first percentage of adsorption and then decreased due to saturation of rice husk particles. Also according to achieved results, calculated saturation capacity in per gram rice husk for Cr(III) and Cu(II) were 30 and 22.5 mg?g?1, respectively. The amounts of Cr(III) and Cu(II) adsorbed increased with increase in their contact time. The rate of reaction was fast. So that 15–20 min after the start of the reaction, between 50 and 60 % of metal ions were removed. Finally, contact time of 60 min as the optimum contact time was proposed.  相似文献   

20.
Song HP  Li XG  Sun JS  Xu SM  Han X 《Chemosphere》2008,72(4):616-621
In this study, the feasibility of applying a magnetotactic bacterial isolate (MTB), Stenotrophomonas sp. to the removal of Au(III) was investigated. Biosorption experiments showed that Au(III) biosorption capacity exhibited no significant difference in the initial pH range of 1.0-5.5, while decreased more significantly in the initial pH range of 5.5-13.0. Langmuir isotherm indicated that the maximum Au(III) biosorption capacity of Stenotrophomonas sp. were 506, 369 and 308 mg g(-1) dry weight biomass at the initial pH values of 2.0, 7.0 and 12.0, respectively. Thiourea was proved to be an effective desorbent to recover Au from the MTB biomass and 91% Au adsorbed on the biomass could be recovered at equilibrium when the thiourea concentration was 0.8M. The magnetic separator developed by our research team used for separating Au loaded MTB biomass showed high separation efficiency, with 100% biomass removed at the magnetic intensity of 1200 Gs in 180 min. The analyses from FTIR and XRD further confirmed that the reduction of Au(III) to Au(0) by the reductants on the MTB biomass occurred, and the deposition of nano-crystal Au(0) particles, ranging from 24.7 to 31.4 nm, could be estimated on the biomass surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号