首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feng S  Kong Z  Wang X  Zhao L  Peng P 《Chemosphere》2004,56(5):457-463
Imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitro-imidazolidin-2-ylideneamine] and RH-5849 [2'-benzoyl-l'-tert-butylbenzoylhydrazinel] are two pesticides used in China since 1992. In the present study we conducted acute toxicity test, micronucleus (MN) test and comet assay of the two pesticides on amphibian, Rana N. Hallowell, a sensitive organism suitable for acting as the bio-indicator of aquatic and agricultural ecosystems. The values of LC50-48 h of imidacloprid were found to be 165 mg l(-1) for tadpoles of Rana limnocharis and 219 mg l(-1) for tadpoles of Rana N. Hallowell. On the other hand, RH-5849 showed no acute toxicity to tadpoles during the 96 h exposure even it was saturated in the test solutions. There were significant differences in the MN frequencies between the negative controls and the treated groups at the dose of 8 mg l(-1) for imidacloprid (p < 0.05) and 40 mg l(-1) for RH-5849 (p < 0.01). Comet assay found significant differences (p < 0.01) in the distributions of DNA damage grades between the negative controls and groups treated in vitro with 0.05, 0.1, 0.2 and 0.5 mg l(-1) of imidacloprid and 5, 25, 50 and 100 mg l(-1) of RH-5849, respectively. DNA damage scores increased with the exposure levels of the two pesticides and dose-effect relationships were observed for both imidacloprid (r2 = 0.92) and RH-5849 (r2 = 0.98). The MN test and comet assay revealed potential adverse effects of the two pesticides on DNA in the erythrocytes of amphibians in aquatic and agricultural ecosystems.  相似文献   

2.
To elucidate the role of phenotype in stress-tolerant bloom-forming cyanobacterium Microcystis, two phenotypes of M. aeruginosa - unicellular and colonial strains were selected to investigate how they responded to copper stress. Flow cytometry (FCM) examination indicated that the percents of viable cells in unicellular and colonial Microcystis were 1.92-2.83% and 72.3-97.51%, respectively, under 0.25 mgl(-1) copper sulfate treatment for 24h. Upon exposure to 0.25 mgl(-1) copper sulfate, the activities of antioxidative enzyme, such as superoxide dismutase (SOD) and catalase (CAT), were significantly increased in colonial Microcystis compared to unicellular Microcystis. Meanwhile, the values of the photosynthetic parameters (F(v)/F(m), ETR(max), and oxygen evolution rate) decreased more rapidly in unicellular Microcystis than in colonial Microcystis. The results indicate that colonial Microcystis has a higher endurance to copper than unicellular Microcystis. This suggests that the efficient treatment concentration of copper sulfate as algaecides will be dependent on the phenotypes of Microcystis.  相似文献   

3.
In this study, the acute toxicity and the in vivo effects of commercial chlorpyrifos, carbofuran and glyphosate formulations on cholinesterase (ChE), glutathione S-transferase (GST) and lactate dehydrogenase (LDH) activities of the mosquitofish (Gambusia yucatana) were investigated. In a first phase of the study, head and muscle ChE were characterized with different substrates (acetylthiocholine iodide, s-butyrylthiocholine iodide and propionylthiocholine iodide) and the selective inhibitors eserine hemisulfate, 1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide (BW284C51), and N,N'-diisopropylphosphorodiamic acid (iso-OMPA). The results obtained suggest that the enzyme present in both head and muscle of G. yucatana is mainly acetylcholinesterase (AChE). Acute toxicity was evaluated by exposing fish to several concentrations of single pesticides and of a mixture of chlorpyrifos/glyphosate. LC50 values were determined after 96 h of exposure, except in the case of carbofuran for which LC50 was calculated after 24 h since almost all the fish died within this period. LC50 values were 0.085 mg/l for chlorpyrifos, 17.79 mg/l for glyphosate, 0.636 mg/l for carbofuran and 0.011 mg/l for the chlorpyrifos/glyphosate mixture. A Toxic Unit approach was used to compare the toxicity of chlorpyrifos and glyphosate when occurring in a mixture with their toxicities as single compounds. Synergistic effects of chlorpyrifos and glyphosate when present in a mixture were found. At the end of each bioassay (24 h for carbofuran, 96 for the other substances/mixture), effects on biomarkers were analyzed. Muscle LDH activity was not altered by any of the three pesticides tested. Gill GST activity was significantly inhibited (40%) by carbofuran after 24 h of exposure to concentrations equal or higher than 0.06 mg/l. ChE muscle and head activity were significantly inhibited (50% and 30%, respectively) by carbofuran at concentrations equal or higher than 0.25 mg/l. Chlorpyrifos induced a significant inhibition of both muscle and head ChE (80% and 50%, respectively) after 96 h of exposure to concentrations equal or higher than 0.05 mg/l. Carbofuran did not induce significant alterations of fish ChE. The ChE EC50 determined for chlorpyrifos/glyphosate mixture (0.070 mg/l) was higher than the correspondent value calculated for chlorpyrifos alone (0.011 mg/l) suggesting an antagonistic effect of glyphosate on ChE inhibition by chlorpyrifos. ChE activity of G. yucatana seems to be a good biomarker to diagnose the exposure of wild populations of this species exposed to anticholinesterase pesticides.  相似文献   

4.
Exposure to specific metallic compounds can cause severe deleterious modifications in organisms. Fishes are particularly prone to toxic effects from exposure to metallic compounds via their environment. Species that inhabit estuaries or freshwater environments can be chronically affected by persistent exposure to a large number of metallic compounds, particularly those released by industrial activities. In this study, we exposed yellow eels (European eel, Anguilla anguilla) for 28 days to environmentally relevant concentrations of four specific metals; lead (300, 600, and 1,200 μg/l), copper (40, 120, and 360 μg/l), zinc (30, 60, and 120 μg/l) and cadmium (50, 150, and 450 μg/l). The selected endpoints to assess the toxicological effects were neurotransmission (cholinesterasic activity in nervous tissue), antioxidant defense, and phase II metabolism (glutathione-S-transferase [GST] activity, in both gills and liver tissues), and peroxidative damage. The results showed an overall lack of effects on acetylcholinesterase for all tested metals. Lead, copper, and cadmium exposure caused a significant, dose-dependent, increase in GST activity in gill tissue. However, liver GST only significantly increased following zinc exposure. No statistically significant effects were observed for the thiobarbituric acid reactive substances assay, indicating the absence of peroxidative damage. These findings suggest that, despite the occurrence of an oxidative-based response after exposure to lead, copper, and cadmium, this had no consequence in terms of peroxidative membrane damage; furthermore, cholinergic neurotoxicity caused by lead, copper, and cadmium did not occur. The implications of these results are further discussed.  相似文献   

5.
The aim of the present study was to assess the effect of the exposure of Leporinus obtusidens (Piava) to zinc and copper on catalase activity in the liver, delta-aminolevulinate dehidratase (delta-ALA-D) activity in liver, muscle, brain and kidney, and thiobarbituric reactive species (TBARS) in brain, muscle and liver. In addition, hematological parameters were measured in blood. The fish were exposed to 10% and 20% of the derived LC(50) values, 2.3 and 4.6 mg Zn l(-1) and 0.02 and 0.04 mg Cu l(-1), and sampled on days 30 and 45. Exposure to Zn(II) and Cu(II) decreased hematological parameters and also delta-ALA-D activity mainly in liver and kidney at all concentrations tested. Liver catalase activity increased after zinc or copper exposure at all concentrations and exposure times tested. Thiobarbituric reactive substances (TBARS) increased in the brain and liver of the fish exposed to zinc(II) for 45 days at both metal concentrations. In muscle, zinc(II) increased TBARS production at both exposure times and concentrations tested. Copper(II) exposure reduced the TBARS levels in liver at both concentrations and times tested. In brain, there was a decrease in TBARS levels only after 45 days of exposure. In muscle, this decrease was observed after 30 days of exposure at both concentrations. Although zinc and copper are required as microelements in the cells, our results showed that the sublethal concentrations of these metals can change biochemical parameters which may alter normal cellular function. These results pointed out the differential sensitivity of fish tissues to essential, but also toxic and environmentally relevant metals. The alterations of distinct biochemical parameters in fish tissues certainly contribute to the toxicity of Zn and Cu, and are of importance for an area that has been growing and has still been poorly explored in the literature.  相似文献   

6.
This study aims to verify the effects of the clomazone concentration used in rice fields on acetylcholinesterase (AChE), thiobarbituric acid reactive substances (TBARS), protein carbonyl and catalase activity in tissues of piava (Leporinus obtusidens). LC(50)-96h was 5.0 mg L(-1) and the fish were exposed to 1/10 of LC(50)-96 h: 0.5 mg L(-1) of clomazone for 96 and 192h. The same parameters were also assayed after a recovery period of 192 h in clean water. AChE activity was reduced only in the brain and heart of fish exposed for 96 h. AChE activity was decreased in the brain, muscle and heart tissues after 192 h of exposure. After 192 h of recovery period, AChE activity remained diminished in brain and muscle and showed a decrease in eye. However, after 192 h of recovery, AChE activity in heart was recovered. Fish showed increased TBARS levels in brain at all experimental periods. TBARS levels decreased in liver and muscle tissues after 192 h of exposure. The increase in muscle TBARS persisted in fish transferred to clean water. Protein carbonyl in the liver was increased in all periods studied including the recovery period. Catalase activity was reduced during all periods. The present study demonstrates the occurrence of disorders in AChE, TBARS, protein carbonyl and catalase activity in piava. The results also show changes in fish after exposure to an environmentally relevant concentration of clomazone. Most effects observed persisted after the recovery period. Thus, these parameters may be used to monitor clomazone toxicity in fish.  相似文献   

7.
Blue mussels (Mytilus edulis) were exposed to an extract made of natural cyanobacterial mixture containing toxic cyanobacterium Nodularia spumigena (70-110 microg nodularin l(-1), 24-h exposure followed by 144-h depuration period in clean water). Toxin concentration increased from initial 400 to 1100 mg kg(-1) after 24-h exposure, measured by liquid chromatography/mass spectrometry (LC/MS). Acetylcholinesterase activity (AChE), a biomarker of direct neurotoxic effects, showed inhibition after 12 and 24h exposure but returned to control level during the depuration period. Catalase (CAT) activity, an indicator of oxidative stress, showed significantly elevated levels in exposed mussels but only 72 h after the end of the exposure. No change in the activity of glutathione-S-transferase (GST) involved in conjugation reactions could be observed. A gradual yet incomplete elimination of nodularin (from 1100 to 600 mg kg(-1)) was observed during the depuration period, and the tissue levels were 30% lower in clean water after 24 h. The observed increase in oxidative stress indicated by elevated CAT activity is likely connected to detoxification reactions leading to the production of reactive oxygen species, including an apparent time lag in this specific enzymatic defence response. That no change in GST activity was observed suggests that this enzyme is not significantly involved in the detoxification process of nodularin-containing cyanobacterial extract in M. edulis.  相似文献   

8.
Tront JM  Saunders FM 《Chemosphere》2006,64(3):400-407
Aquatic plants uptake, transform and sequester organic contaminants and are used as a bioremediation strategy for the removal of pollutants from wastewaters. A better understanding of factors affecting rate of uptake of contaminants by aquatic plants is needed to improve engineered systems for removal of pollutants from wastewaters. This work focused on delineating sorption to plant surfaces and understanding effects of plant metabolic activity, inhibition, and media pH on the uptake of the ionizable contaminant 2,4,5-trichlorophenol (TCP) by aquatic plant Lemna minor. During L. minor exposure to TCP (0.5-13.9 mg l(-1)), a range of plant metabolic activities was measured using oxygen production rate (0-18.4 micromol h(-1)). A positive correlation was shown between contaminant uptake rate and plant activity. Contaminant uptake was examined at a range of media pH values (6-9) and uptake rates were linearly correlated to fraction of contaminant in protonated form. These results demonstrated a link between plant activity and uptake of contaminant by plants and stress the importance of incorporating plant metabolic activity and contaminant speciation in development of natural and engineered phytoremediation systems. This research also indicates that aquatic plants can actively accumulate trace-organic contaminants and may ultimately serve as a sink for these materials in the natural environment.  相似文献   

9.
Monnet F  Bordas F  Deluchat V  Baudu M 《Chemosphere》2006,65(10):1806-1813
The aim of this study was to investigate the toxicity of copper on the aquatic lichen Dermatocarpon luridum focusing on the activities of some antioxidant enzymes. Investigations were conducted using increasing copper concentrations (0.00, 0.25, 0.50, 0.75 and 1.00 mM CuSO(4) x 5H(2)O) in synthetic freshwater that emulated the major ion compositions of its natural water biota; time course measurement was 0, 3, 6, 12, 24 and 48 h. The copper concentration in thalli increased with its increase in the medium and the duration of treatment. Copper induced lipid peroxidation, measured using the hydroperoxi-conjugated dienes (HPCD) concentration. The decrease in the protein concentrations was similar in thalli exposed to copper concentrations above 0.50 mM and the decrease was twice lower in thalli exposed to 0.25 mM copper. The activities of antioxidant enzymes measured were differently affected by copper excess. For 0.25 mM copper, the activities of SOD (superoxide dismutase) and APX (ascorbate peroxidase) were unchanged when compared with unstressed thalli whereas the CAT (catalase) activity increased and the GR (glutathione reductase) activity decreased. The activities of SOD and APX increased in thalli exposed to concentrations above 0.50mM copper. The CAT activity increased after the first 3h of experiments at these concentrations and then decreased with the duration of treatment at an activity lower than in the unstressed plant. Whereas the APX activity increased, the GR activity similarly decreased for the copper concentration tested whatever the duration of the experiment.  相似文献   

10.
Experiments were conducted to examine the effects of the anti-ozonant ethylenediurea (EDU) and chronic ozone (O3) exposure on leaf physiology and senescence in an O3-sensitive potato cultivar (Solanum tuberosum L. cv. Norland). A dose-response experiment showed that an EDU concentration of 15 mg l(-1) soil (given as a soil drench) provided complete protection from accelerated foliar senescence induced by exposure to 0.1 microl l(-1) O3 for 5 h day(-1) for 11 days. EDU doses of 45 and 75 mg active ingredient l(-1) soil also gave protection but were associated with symptoms of toxicity and delayed senescence. In further experiments, plants were given 0 or 15 mg EDU l(-1) soil and exposed to clean air or 0.1 microl l(-1) O3 for 5 h day(-1) for 14 days. Chronic O3 exposure in the absence of EDU resulted in accelerated foliar senescence, characterized by early declines in net photosynthesis and Rubisco quantity in O3-treated plants relative to controls. EDU in the presence of O3 gave complete protection against symptoms of accelerated senescence. Senescence was not delayed in plants that received EDU in the absence of O3, and no symptoms of EDU toxicity were evident. The results suggest that EDU-induced tolerance to O3 was not based on 'anti-senescent' properties of this anti-ozonant.  相似文献   

11.
Liber K  Weber L  Lévesque C 《Chemosphere》2005,61(8):1123-1133
Lake trout fry (Salvelinus namaycush) were exposed in laboratory experiments to two wastewater treatment polymers, one anionic (MagnaFloc 156) and one cationic (MagnaFloc 368; Ciba Speciality Chemical), to determine if these chemicals which are used and discharged by mining operations in Canada's North pose a significant hazard to juvenile fishes. The cationic polymer was substantially more toxic to lake trout fry than the anionic polymer, with 96-h LC50 estimates of 2.08 and >600 mg/l, respectively. Separate 30-d exposure experiments yielded no observed and lowest observed effect concentrations, respectively, of 0.25 and 0.5mg/l for MagnaFloc 368, and 75 and 150 mg/l for MagnaFloc 156. In both cases, behavioural responses, especially startle response, were the most sensitive test endpoints. Histopathological assessment revealed that gill pathology appeared within a few days of exposure to both polymers, apparently as a result of localized hypoxia. Acute (4 d) effects included cloudy swelling of epithelial cells, increased gill vascularization, and thickening and shortening of the gill lamella. Chronic (30 d) polymer exposure produced only slightly greater pathological effects than acute exposure, with comparable responses observed only at >1.0mg/l MagnaFloc 368 and 150 mg/l MagnaFloc 156, suggesting that the fish displayed some level of both behavioural and physiological adaptation to the respiratory stress imposed by the two polymers.  相似文献   

12.
Copper is a common environmental contaminant, which is particularly toxic to living organisms when in high concentrations. To monitor environmental contamination by Cu2+ and other heavy metals, well characterized bioindicator organisms and standardized assays are needed. As a first step toward this end, we have analysed Cu2+ effects upon Girardia tigrina freshwater planarians, based on the assessment of mobility, regeneration performance, micronucleus (MN) frequency in regenerating animals, and reproductive performance. These four biomarkers provided complementary information on Cu2+ toxicity, teratogenicity, mutagenicity and chronic (>96 h of exposure) effects, respectively. The LC50 was calculated for newborn, adult and regenerating planarians, and values of 12+/-0.02 mg l(-1), 42+/-0.08 mg l(-1), 48+/-0.13 mg l(-1), respectively, were obtained after 96 h of exposure. Mobility, for intact adults, and time of regeneration and MN frequency, for regenerating animals, were significantly affected by Cu2+ concentrations as low as 0.10 mg l(-1). MN assay for regenerating G. tigrina neoblasts showed higher sensitivities than MN assays performed with other bioindicator freshwater organisms, such as moluscs or fish. Chronic exposure effects were clearly evidenced by assessment of reproductive performance, with significant reduction in fecundity and fertility rates upon exposure to Cu2+ concentrations as low as 0.05 mg l(-1). Therefore, G. tigrina can be regarded as a useful bioindicator species for the detection and evaluation of Cu2+ effects upon freshwater invertebrates, allowing insights on the effects of Cu2+ (and possibly other heavy metals) in a freshwater environment.  相似文献   

13.
The herbicides MCPA, butylate, atrazine and cyanazine are extensively used in Canadian agriculture and information regarding their effects on indigenous biota is scarce. Phytotoxicity assessments were conducted in the laboratory on the common green alga Selenastrum capricornutum using both the active ingredient of the herbicides and their formulated products (for MCPA and butylate). Endpoints determined after the 96 h exposure included algal population growth inhibition (IC50-cell counts), percent lethality (LC50-flow cytometry derived) and photosynthetic electron transport inhibition (EC50-fluorescence induction). Pesticide formulations had greater toxic effects than the active ingredient alone. The 96 h IC50 (50% Inhibition Concentration) and LOEC (Lowest Observable Effects Concentration) using cell counts of S. capricornutum were 18.4 and 8.9 mg l(-1) respectively for MCPA-active ingredient and for MCPA-formulated, these were 0.62 and 0.0062 mg l(-1) respectively. Those for butylateactive ingredient were 61.0 and 8.3 mg l(-1) and for butylate-formulated 1.46 and 0.17 mg l(-1), respectively. The triazines active ingredient, which are photosynthetic inhibitors, had greater effects than either the MCPA or butylate. The IC50 for cyanazine and atrazine were 0.059 and 0.026 mg l(-1), respectively. By comparing the IC50 and LC50 values for the tested active ingredients, it was found that the effects of atrazine were algicidal, whereas those of cyanazine, butylate and MCPA were algistatic.  相似文献   

14.
Copper compounds have been intentionally introduced into water bodies as aquatic plant herbicides, algicides and molluscicides. Copper-based fertilizers and fungicides have been widely used in agriculture as well. Despite the fact that copper is an essential element for all biota, elevated concentrations of this metal have been shown to affect a variety of aquatic organisms. Nonetheless, comparative studies on the susceptibility of different freshwater species to copper compounds have seldom been performed. This study was conducted to compare toxicity of copper-based pesticides (copper oxychloride, cuprous oxide and copper sulfate) to different freshwater target (Raphidocelis subcapitata, a planktonic alga and Biomphalaria glabrata, a snail) and non-target (Daphnia similis, a planktonic crustacean and Danio rerio, a fish) organisms. Test water parameters were as follows: pH = 7.4 +/- 0.1; hardness 44 +/- 1 mg/l as CaCO3; DO 8-9 mg/l at the beginning and > 4 mg/l at the end; temperature, fish and snails 25 +/- 1 degrees C, Daphnia 20 +/- 2 degrees C, algae 24 +/- 1 degrees C. D. similis (immobilization), 48-h EC50s (95% CLs) ranging from 0.013 (0.011-0.016) to 0.043 (0.033-0.057) mg Cu/l, and R. subcapitata (growth inhibition), 96-h IC50s from 0.071 (0.045-0.099) to 0.137 (0.090-0.174) mg Cu/l, were the most susceptible species. B. glabrata (lethality), 48-h LC50s from 0.179 (0.102-0.270) to 0.854 (0.553-1.457) mg Cu/l, and D. rerio (lethality), 48-h LC50s 0.063 (0.045-0.089), 0.192 (0.133-0.272) and 0.714 (0.494-1.016) mg Cu/l, were less susceptible than Daphnia to copper-based pesticides. Findings from the present study therefore suggest that increased levels of copper in water bodies is likely to adversely affect a variety of aquatic species.  相似文献   

15.
Chang L  Chen IP  Lin SS 《Chemosphere》2005,58(4):485-492
It has been shown that the CeO2/gamma-Al2O3 catalyst is a feasible alternative to CeO2 for the catalytic wet air oxidation (CWAO) of phenol because it remains an effective catalyst and yet is cheaper to prepare. In this study, we found that the optimal cerium content in the CeO2/gamma-Al2O3 catalyst was 20 wt.%, regardless of catalyst loading. Furthermore, at 180 degrees C, with a phenol concentration of 1000 mg l(-1), and an O2 partial pressure of 1.0M Pa or 1.5M Pa, the optimal catalyst loading was 3.0 gl (-1). The efficacy of CWAO of phenol improved with O2 partial pressure, although the effects of O2 pressure were more significant between 0.5 MPa and 1.5 MPa than between 1.5 MPa and 2.0 MPa. After 2 h of reaction, approximately 100% phenol conversion and 80% total organic carbon (TOC) removal was recorded at 180 degrees C, 1000 mg l(-1) of phenol and 3.0 g l(-1) of catalyst. Because these percentages subsequently leveled off, it is suggested that 2 h is a suitable time over which to run the reaction. The efficacy of CWAO of phenol decreased as initial phenol concentration was raised (from 400 to 2500 mg l(-1)), with the exception of phenol conversion after about 2 h, for which 400 mg l(-1) produced the lowest phenol conversion figure. Higher phenol concentrations require both catalyst loading and O2 partial pressure to be increased to maintain high performance. For example, for 2000 mg l(-1) and 2500 mg l(-1) phenol, nearly 100% phenol conversion and 90% TOC removal after 4 h of reaction at 180 degrees C required 4.0 g l(-1) of catalyst and 2.0 MPa.  相似文献   

16.
We examined acute (2 h exposure of 5-day-old larvae) and subchronic (exposure from fertilization up to an age of 11 days) effects of NiCl(2).6H2O on embryos and larvae of zebrafish (Danio rerio), both alone and in combination with oxygen depletion. The following endpoints were recorded: acute exposure: locomotory activity and survival; subchronic exposure: hatching rate, deformations, locomotory activity (at 5, 8 and 11 days) and mortality. In acute exposures nickel chloride (7.5-15 mg Ni/L) caused decreasing locomotory activity. Oxygen depletion (or=10 mg Ni/L resulted in delayed hatching at an age of 96 h, in decreased locomotory activity at an age of 5 days, and increased mortality at an age of 11 days (LC20=9.5 mg Ni/L). The observed LOEC for locomotory activity (7.5 mg Ni/L) is in the range of environmentally relevant concentrations. Since locomotory activity was already affected by acute exposure, this parameter is recommended to supplement commonly recorded endpoints of toxicity.  相似文献   

17.
Zinc and mercury are common contaminants of estuaries and coastal ecosystems where they may induce adverse effects on the biota. Carcinus maenas is a key-species in several European estuaries, living in close association with the sediment where a considerable number of environmental contaminants, including zinc and mercury may accumulate. In the present study, the acute effects of zinc and mercury on C. maenas from the Minho River Estuary (NW Portugal) were investigated by using the activity of the enzymes cholinesterase (ChE), lactate dehydrogenase (LDH) and glutathione S-transferases (GST) as effects' criteria. Crabs were exposed for 96h to several concentrations of Zn(2+) (0, 1.84, 3.71, 7.39 and 14.79mg/l) or Hg(2+) (0, 0.09, 0.19, 0.37 and 0.74mg/l). The choice of Zn(2+) test concentrations was based on the LC50 value (14.86mg/l) determined in a first part of the study, while the choice of Hg(2+) concentrations was based on values from the literature. At the end of the bioassays, eye, muscle and hepatopancreas tissues were isolated and used for ChE, LDH and GST determinations, respectively. Zinc significantly inhibited ChE activity (p<0.05, EC50=14.68mg/l), caused significant alterations of GST activity (p<0.05) and induced LDH activity (p<0.05) at the exposure of 14.79mg/l. Mercury significantly inhibited ChE activity (p<0.001, LOEC=0.09mg/l, EC50=0.235mg/l) and increased both GST (p<0.05, LOEC=0.774mg/l) and LDH activities (p<0.05, LOEC=0.119mg/l). These results suggest that both metals interfere with cholinergic neurotransmission in C. maenas by inhibiting ChE activity. In addition, they also interfere with GST activity and this may reduce the capacity of detoxification of some chemicals and/or to increase the probability of oxidative stress to occur. Furthermore, both metals increase LDH activity, suggesting an interference with energy production pathways. Therefore, the presence of zinc and mercury in estuaries at concentrations in the mg/l or mug/l range, respectively, may have a negative impact on C. maenas.  相似文献   

18.
The carcinogenic and toxic ptaquiloside (PTA) is a major secondary metabolite in Bracken fern (Pteridium aquilinum (L.) Kuhn) and was hypothesized to influence microbial communities in soil below Bracken stands. Soil and Bracken tissue were sampled at field sites in Denmark (DK) and New Zealand (NZ). PTA contents of 2.1 +/- 0.5 mg g(-1) and 37.0 +/- 8.7 mg g(-1) tissue were measured in Bracken fronds from DK and NZ, respectively. In the two soils the PTA levels were similar (0-5 microg g(-1) soil); a decrease with depth could be discerned in the deeper B and C horizons of the DK soil (weak acid sandy Spodosol), but not in the NZ soil (weak acid loamy Entisol). In the DK soil PTA turnover was predominantly due to microbial degradation (biodegradation); chemical hydrolysis was occurring mainly in the uppermost A horizon where pH was very low (3.4). Microbial activity (basal respiration) and growth ([3H]leucine incorporation assay) increased after PTA exposure, indicating that the Bracken toxin served as a C substrate for the organotrophic microorganisms. On the other hand, there was no apparent impact of PTA on community size as measured by substrate-induced respiration or composition as indicated by community-level physiological profiles. Our results demonstrate that PTA stimulates microbial activity and that microorganisms play a predominant role for rapid PTA degradation in Bracken-impacted soils.  相似文献   

19.
Combined effects of cadmium and composted manure to aquatic organisms   总被引:2,自引:0,他引:2  
Ghosal TK  Kaviraj A 《Chemosphere》2002,46(7):1099-1105
To evaluate the interactive toxicity of cadmium (Cd) and composted manure to aquatic organisms 96 h static bioassays were conducted in the laboratory with fry of common carp (Cyprinus carpio), copepod (Diaptomusforbesi) and oligochaete worm (Branchiura sowerbyi). Five concentrations of composted manure (0, 0.25, 0.5, 1.0 and 6.7 g/l) were prepared from the aquatic weed, Pistia stratiotes and each of them was combined with several concentrations of Cd to determine 96 h LC-50 values of Cd for the test organisms. Addition of composted manure, irrespective of concentration, significantly reduced the LC-50 value of Cd to the copepod and common carp fry while it increased the LC-50 value of Cd to the worm. Increased susceptibility of the worm to combined treatment of composted manure and small concentrations of Cd could be revealed only from the dose mortality curve. Results of acute toxicity bioassays were different from the results of bioassays conducted with small concentrations of Cd. Worms, exposed to 2.5 mg/l Cd, accumulated more Cd than did the carp fry and copepod. Accumulation of Cd by worms was increased by the addition of 6.7 g/l composted manure while it decreased in the carp fry and copepod. Food consumption rate of common carp fingerling was significantly reduced relative to the control by exposure to 2.5 mg/l Cd. No change in feeding rate was observed when Cd was combined with composted manure (6.7 g/l).  相似文献   

20.
The copper (Cu) resistance of Arctostaphylos uva-ursi was tested in a pot experiment (lasting 8 weeks) using rooted cuttings originating from an area near the Harjavalta Cu-Ni smelter, SW Finland. The fine roots were moderately infected by arbutoid mycorrhizae. The plants were exposed to five Cu levels (1, 10, 22, 46 and 100 mg l(-1)) given repeatedly together with a nutrient solution. The critical Cu concentration in the nutrient solution inhibiting the growth of A. uva-ursi was below 10 mg l(-1) Cu (EC(50) value for biomass production 3.3 mg l(-1) Cu). This concentration was clearly lower than the value we have found earlier for other dwarf shrubs under similar experimental conditions. Most of the Cu given accumulated in the roots and old stems. The results suggest that A. uva-ursi cuttings were relatively sensitive to Cu despite the ability of the adult clones to grow in Cu-contaminated soil. The adult clones extend their roots into the less toxic deeper soil layers, which may facilitate the avoidance of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号