首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用“假设密闭绝热空间法”,计算工业厂房的自然通风排热量。实践证明,此方法是可行的。  相似文献   

2.
采用“假设密闭绝热空间法”,计算工业厂房的自然通风排热量。实践证明,此方法是可行的。  相似文献   

3.
针对大断面动压回采巷道大变形问题,以成庄矿近20 m~2的强扰动回采巷道为例,采用数值模拟及现场实测的方法,对围岩破坏特征、变形规律以及稳定性控制技术进行分析。研究表明:断面尺寸的增大及强回采扰动迫使巷道发生非对称性变形,内部发生分区破坏;采掘应力作用下巷道围岩变形破坏具有明显的阶段性特征;对于大断面动压回采巷道稳定控制,单一的传统支护方式已难以奏效,需采用新型"三高"锚杆及注浆加固等分区协同支护技术;实例中采用该技术支护巷道后,底板底鼓量减少450 mm,两帮移近量减少800 mm,巷道变形得到了有效控制。  相似文献   

4.
为了研究巷道断面形状特征对围岩散热特性的影响,结合矿井通风的实际情况,建立贴体坐标系下二维径向围岩非稳态导热的微分方程.利用坐标变换方法将实际物理平面内的控制方程转换到规则的计算平面内进行求解.以水力半径为1.2 m的不同断面形状的巷道为研究对象,利用自主编制的基于有限体积法(FVM)的C++求解程序,对其内部温度场变化情况开展数值模拟研究.结果表明,矿井通风初期的前5年内,围岩温度场的分布特点受巷道断面形状的影响较为显著.围岩散热呈现各向异性特点,且通风时间越长各向异性的特点越显著.通过数据分析拟合发现,巷道围岩的调热圈半径随通风时间呈指数变化,且经历相同通风时间后,调热圈半径随形状因子增大呈线性增加趋势.巷道壁面平均温度和散热热流密度随形状因子增大而降低,但二者随时间变化的轨迹不同.  相似文献   

5.
黄鑫胜 《安全》2022,(11):55-60
为准确测量巷道断面风速,采用数值模拟和现场测试的方法研究断面形状不规则的半圆拱巷道断面风速分布规律。结果表明:断面风速分布规律与入口风速大小无关,由巷道壁向巷道中心风速逐渐增大;平均风速线距巷道左右帮或顶底板距离约为巷道宽度或高度的0.1倍,采用定点测风能够有效测出巷道断面内平均风速。为解决不规则巷道断面风速分布特征提供依据。  相似文献   

6.
为研究突扩巷道流场特征和局部阻力特性随壁面粗糙度的变化规律,采用计算流体力学(CFD)方法对实际巷道进行数值模拟,并基于流体相似理论,搭建相似比为1∶20的实验模型,使用粒子图像测速(PIV)系统等实验装置和仪器进行突扩巷道流场测试实验与局部阻力测定实验,将实验结果对模拟进行验证,根据模拟结果,对不同壁面粗糙度的突扩巷道流场特征和局部阻力特性进行分析。研究结果表明:在流场测试方面,随风速增大,突扩后涡流区长度先增大后保持不变;在局部阻力测定方面,数值模拟结果与实验测定结果相差在10%以内,随着巷道粗糙度增加,突扩巷道局部阻力系数呈非线性增大,且当突扩比为1∶2时,粗糙度分别为0.02,0.04,0.06,0.08 m的突扩巷道局部阻力系数ξ1分别为0.373 6,0.386 3,0.395 0,0.401 6。研究结果对于新掘巷道的局部通风阻力预测工作,以及为矿井智能通风提供准确风阻参数具有重要意义。  相似文献   

7.
为降低微细粉尘危害,实现作业场所内的有效控尘、防尘,在矩形、拱形模拟巷道内采用网格布点法布置测点,调整风机风速法进行试验,并运用Gambit建模、Fluent开展数值模拟分析。结果表明:当尘源以10 mg/s的速率喷尘时,尘粒自由弥散,巷道中轴线处粉尘浓度小于壁面边缘处;当调节风速为1 m/s时,中轴线处与壁面边缘处浓度基本相等;当尘粒自由弥散时巷道壁的黏滞作用对粉尘扩散和分布起主导作用,且风速是影响微细粉尘悬浮状态的主要因素;降低巷道内微细粉尘浓度的方法主要包括合理设计环境风速和提高巷道壁面光滑性,减小壁面对微细粉尘的黏滞作用。  相似文献   

8.
针对金川矿区大断面巷道在强构造应力作用下围岩变形严重的情况,提出了中空预应力注浆锚杆的支护工艺。通过数值计算得出以下结论:相比传统的普通砂浆锚杆支护工艺,采用中空预应力注浆锚杆支护工艺能够主动加固围岩,提高支护刚度;巷道两帮的变形减小了约14.56%,最大、最小主应力分别降低了4.4%和7.2%,粘结层破坏范围也随之减小。通过对支护后巷道变形监测发现:两帮最终变形量减小了约36.6%;通过抗拔实验,中空预应力注浆锚杆的抗拔力达到140kN,远大于普通砂浆锚杆的40kN抗拔力,中空预应力注浆锚杆有更好的支护效果。  相似文献   

9.
西伯利亚的许多矿山,在采用高威力炸药进行爆破后,使独头巷道的工作面以每循环2.0~2.5米的速度向前掘进,因此,需要创造更良好的通风条件。但是,现行的规程仍要求风筒末端距工作面不大于10米,因而,通风设备经常受到冲击波和爆破飞石的破坏。解决办法是广泛使用新研制的引射器,  相似文献   

10.
冲击载荷作用下不同断面形状巷道稳定性数值仿真分析   总被引:1,自引:0,他引:1  
为了研究动载荷作用下井巷的稳定性,基于波动冲击理论,利用FLAC~(3D)值模拟软件,对深井不同断面巷道在动载荷作用下的围岩位移场变化规律进行了数值仿真。结果表明:不同巷道断面形式对冲击荷载作用的响应程度存在显著差别,巷道顶板监测点的速度产生波动从大到小依次为矩形、直墙拱形和圆形断面巷道;巷道顶板均产生明显下沉,矩形断面巷道的下沉量最大,其次是直墙拱断面巷道,圆形断面巷道的下沉位移最小;对于巷道围岩垂直应力的分布范围,圆形断面巷道最小,矩形断面巷道最大,直墙拱断面巷道居中,并得到了现场监测结果验证。  相似文献   

11.
刘剑    宋莹    刘明浩    刘永红    邓立军   《中国安全生产科学技术》2015,11(12):65-71
针对传统井下测风方法以及传统接触式流速测量方法的局限性,以矩形均直巷道断面风速实验测试为例,利用非接触式测试技术激光多普勒测速仪(LDA)对断面风速进行实验测试。实验表明:在平均风速为3m/s左右的均直巷道内的稳定流动下,断面风速分布近似呈矩形环状封闭波动曲线,测点风速具有极度的脉动现象,但测点速度大小服从正态分布。在不同断面平均风速下,断面轴线上风速分布均近似服从指数函数形式。研究表明,LDA测试技术能够较好的反映实验巷道流场风流湍流脉动特性,可以作为研究矿井通风一系列复杂流动的实验手段。  相似文献   

12.
为改善大断面掘进巷道内通风除尘效果,针对龙王沟煤矿副斜井净断面积24.9 m2、供风量1 500 m3/min的情况,采用计算流体软件Fluent,建立长压短抽混合式通风条件下稳态离散相模型(DPM),研究压、抽风筒口相对位置和压抽风量配比对粉尘-风流耦合运移的影响。结果表明,当压入式风筒口到工作面距离为27.5 m,抽出式风筒口到工作面距离为5.0 m,压抽比为1.2时,龙王沟煤矿副斜井大断面综掘巷道内风流稳定,综合除尘效果最佳,模拟结果与现场实测结果基本一致。  相似文献   

13.
为保证同忻煤矿安全、高效开采,采用应力解除法对大同矿区同忻井田3-5#煤层的地应力场进行了测量,结合理论分析、数值模拟与现场监测,分析了在该类型应力场中不同巷道布置方向与巷道围岩稳定性之间的关系。测得同忻井田最大主应力为20.42 MPa,方位角为245.18°,确定了同忻井田地应力场属于σHv型。理论计算和数值模拟的结果表明,有利于回采巷道稳定性的布置方向为与最大水平主应力方向成30°,并采用巷道顶板离层监测仪对其进行了验证。  相似文献   

14.
在西德煤矿,由于采掘深度和产量的增加,导致井下温度升高。个别煤矿在开采深度增加200~300m 时,原岩温度可增加8~12℃。鲁尔煤矿在离地表1200m 或1300m 深的地方开采时,原岩温度高达54℃或58℃。图1为1960~1980年采煤深度增加200m(从—670x~-870m),原岩温度按比例增加的情况。  相似文献   

15.
河流是工业废水的主要受纳水体之一。研究河流中的废水流量、计算水体污染负荷、控制污染源排污量以及估价污染控制效果等都与河流年径流量相关。因此,河流流量的测量十分重要。一般,采用下面三种方法测量河流流量:(1)流速仪法;(2)浮标法;(3)示踪剂法(示踪剂有化学类、放射性类及染料类)。本文仅讨论采用浮标法测量河流流量时在浮标材质、断面测量、测量方法等方面应注意的问题。  相似文献   

16.
用浮标法测量废水受纳河流的流量   总被引:1,自引:0,他引:1  
  相似文献   

17.
用数学物理方法从理论上探讨了在同声程条件下,用不同孔径的长横孔试块作为标准反射体对超声波反射声压的影响,找出它们衰减分贝值的变化规律.最后用长横孔试块作起始灵敏度并结合实际探伤来确定缺陷的当量.  相似文献   

18.
19.
通过对电梯运行机理的分析,探讨电梯制动器制动距离检测与判断方法,重点研究如保判定检测结果是否符合要求,并导出一个科学的判断方法.  相似文献   

20.
1 前言 主梁水平旁弯是桥式起重机安全使用的一个重要参数,也是桥式起重机安全技术检验的一个重要内容。主梁水平旁弯超标一方面会使主梁承受较大的额外扭矩。降低主梁承载能力,进而导致主梁失稳破坏。另一方面还会引起小车轨道弯曲变形,增加小车运行阻力,引发“啃道”现象,甚至引起小车出轨,造成严重事故。因此,在《通用桥式起重机(GB/T14405—93)》《LD电动单梁起重机(JB1306—84)》等标准和规范中对主梁水平旁弯都有严格的规定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号