首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鞍山市大气PM10中多环芳烃(PAHs)的污染特征及其来源   总被引:2,自引:3,他引:2  
2005年3月和8月在辽宁省鞍山市8个采样点采集PM10样品,用液相色谱-质谱法分析了PM10上负载的11种多环芳烃(PAHs),并探讨了其分布特征和来源.结果表明:鞍山市PM10中ρ(PAHs)时空变化特征显著,冬季高于夏季,且工业区PAHs污染最严重;在PAHs中4环以上的组分占主导,冬季ρ(4环PAHs)较高,而在夏季ρ(5~6环PAHs)较高.运用比值法和主成分分析法对PAHs来源进行分析,发现冬季的主要污染源为燃煤排放、机动车尾气排放和炼钢工业排放;夏季主要污染源为燃煤排放、机动车尾气排放、生物质燃烧排放和炼钢工业排放等,来源较冬季复杂.机动车尾气排放对PAHs的贡献在2个季节都较为明显,冬季燃煤排放的贡献比重明显增加.   相似文献   

2.
本研究采用主动采样技术历时一年连续采集大气TSP样品,利用GC-MS分析测试TSP中16-PAHs的质量浓度,分析大气TSP中PAHs的浓度变化特征,成分谱分布规律。研究结果表明:成都TSP中PAHs浓度范围为15.75~295.63 ng/m3,年平均浓度及标准偏差为82.16±53.31 ng/m3,在Spearman相关检验中TSP中PAHs浓度与气温呈显著的负相关性,相关系数为:-0.6855,TSP中PAHs与TSP质量浓度成正相关关系,相关系数为:0.7186,全年大气TSP中PAHs浓度呈现出冬季>春季>秋季≈夏季的季节变化特征。  相似文献   

3.
为探究港口地区污染大气中多环芳烃(PAHs)的污染特征和潜在来源,以青岛港为研究对象,于2018年8月至2019年5月期间采集了4个季节的PM2.5样品(n=59),分析了PM2.5中PAHs的季节变化和组成特征,使用相关性分析探索了气象因素对PAHs浓度的影响,并采用正定矩阵因子分解和潜在来源贡献函数模型对潜在来源进行解析.结果表明,ρ(PAHs)平均值为(8.11±12.31) ng·m-3,秋冬季节高于春夏季节.PAHs的季节性分子组成相似,以4~5环PAHs (75.43%)为主.荧蒽、苯并[e]芘、苯并[a]蒽、菲、芘和䓛是研究区域PAHs的优势物种,这与船舶尾气中主要化合物组成相似.相关性分析表明,PAHs浓度与温度和相对湿度呈极显著负相关,与大气压和风向呈极显著正相关,与风速的相关性较差.PMF分析提取出6个贡献因子,结果表明,青岛港地区受航运排放(28.83%)影响最大,其次是机动车排放(20.49%)以及原油挥发(13.47%)等,夏季受航运排放影响最大.PSCF结果表明,京津冀、环渤海和鲁北地区是远距离传输的主要来源区域.  相似文献   

4.
大气中的多环芳烃(PAHs)及其衍生物是影响环境和威胁人类健康的全球性问题.为了研究淄博市PM2.5中PAHs及其衍生物的污染特征、来源和健康风险,于2020年11月5日至12月26日期间采集PM2.5样品,使用气相色谱-质谱联用仪(GC-MS)分析PM2.5中的16种常规PAHs、9种NPAHs和5种OPAHs的浓度,利用特征比值法和PMF模型对其主要来源进行解析,并使用基于源解析结果的终生致癌风险模型(ILCR)评估了供暖前后PAHs及其衍生物对成年男女的健康风险.结果表明,采样期间淄博市PM2.5中∑16p PAHs、∑9NPAHs和∑5OPAHs浓度均值分别为:(41.61±13.40)、(6.38±5.70)和(53.20±53.47)ng·m-3,供暖后3类PAHs浓度明显增加,分别为供暖前的1.31、2.04和5.24倍.采样期间(Chr)、苯并[a]芘(Ba P)和苯并[a]蒽(Ba A)为p P...  相似文献   

5.
为研究聊城市冬季PM_(2. 5)中多环芳烃(PAHs)的浓度水平、来源及健康效应,于2017年1~2月对聊城市PM_(2. 5)中的14种PAHs进行分析,利用特征比值法和PCA-MLR模型对其来源及贡献率进行解析,并利用Ba P当量浓度(Ba Peq)和呼吸途径暴露PAHs引发癌症的风险(ILCR)模型进行健康风险评估.结果表明,聊城市冬季PM_(2. 5)中PAHs的平均质量浓度为(64. 89±48. 23) ng·m~(-3),其中Fla、Pyr和Chry的浓度最高,占比分别为15. 5%、12. 8%和12. 7%,且4环PAHs总质量浓度占比最高,春节前与烟火Ⅱ期比其他时期污染较重. PCA-MLR模型分析结果表明,聊城市冬季PM_(2. 5)中PAHs来源主要包括煤炭燃烧、生物质燃烧和机动车尾气.聊城市冬季TEQ平均值为(6. 37±4. 92) ng·m~(-3),ILCR模型评估结果表明,成人的ILCR值高于儿童,二者的ILCR值均处于风险阈值内(10-6~10-4),表明聊城市冬季PM_(2. 5)具有潜在致癌风险.  相似文献   

6.
为探索吕梁地区PM2.5中多环芳烃的季节变化、健康风险和潜在来源,于2018年10月23日至2019年7月1日对离石区(市区)和孝义市(郊区)进行PM2.5样品采集,利用气相色谱-质谱联用仪(GC-MS)测定了14种多环芳烃浓度.总多环芳烃的浓度年均值为95.50 ng·m-3,主要以5~6环为主(49.7%),3环占比较低(8.3%);吕梁市多环芳烃浓度呈现冬季>秋季>春季>夏季的季节性变化规律,市区浓度年均值(130.47 ng·m-3)高于郊区(84.4 ng·m-3);增量终身致癌风险和蒙特卡洛模拟结果均表明吕梁市多环芳烃毒性服从成人>青年>儿童的规律,除夏季外,离石区增量终身致癌风险值均在10-6~10-4之间,远高于孝义市,表明市区存在较高的多环芳烃潜在风险;通过采用特征比值法和正定矩阵因子分解模型表明,吕梁市多环芳烃主要来自于煤和生物质的燃烧(61.9%)和机动车尾气排放(38.1%),由后...  相似文献   

7.
为研究承德市PM2.5中多环芳烃(PAHs)的季度变化特征和污染来源,于2019年的1、 4、 7和10月采集PM2.5样品,采用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs的浓度,并利用时序变动、特征比值和正定矩阵因子模型(PMF)的方法,分析了各季节PAHs的浓度变动、组分特征和潜在污染源.此外,为评价PAHs对健康风险的影响,采用BaP毒性当量法(BaPTeq)及增量终生致癌风险(ILCR)模型,并结合PAHs数据和PMF结果进行分析.结果表明,采样期间承德市PM2.5中■的变化范围为2.7~246.4 ng·m-3,呈现(136.8±52.1)ng·m-3(冬季)>(70.3±36.7)ng·m-3(秋季)>(24.7±17.4)ng·m-3(春季)>(13.7±9.4)ng·m-3(夏季)的显著季节特征.不同环数PAHs的浓度占总浓度的占比中,5~6环的...  相似文献   

8.
为探讨华北地区秋冬季重污染过程PM2.5(细颗粒物)中PAHs(多环芳烃)的污染水平、分布特征及来源,分别采集2018年11月17日—2019年1月19日德州市和北京市PM2.5样品,利用气相色谱-质谱法测量两个站点6次重污染过程中26种PAHs浓度水平,分析PAHs污染特征、分子组成分布及其来源,并利用毒性当量因子估算了PAHs毒性.结果表明:①6次重污染过程中,德州站点∑26PAHs浓度为62~191 ng/m3,北京站点为61~129 ng/m3.②单位质量PM2.5中PAHs的浓度北京站点更高.③两个站点PAHs分子组成分布较为一致,萘、蒽、芴等低分子量的PAHs浓度较低,高分子量PAHs浓度较高,浓度最高的分别为苯并[b]荧蒽、苯并[a]芘、苯并[a]蒽和甲基荧蒽等.④特征比值结果显示,PAHs来源包括柴油车尾气、燃煤和生物质燃烧,德州站点受生物质燃烧影响更为显著.⑤毒性当量计算结果表明,德州站点毒性当量浓度(TEQ)高于北京站点,6次重污染过程中两个站点PAHs的TEQ平均值在6.5~17.2 ng/m3之间,低于国内其他一些地区,但苯并[a]芘的浓度在5.2~13.1 ng/m3之间,超过了GB 3095—2012《环境空气质量标准》日均值的标准限值(2.5 ng/m3),对人体健康存在潜在危害.研究显示:秋冬季重污染过程中,北京站点单位质量PM2.5中PAHs的浓度较高,两个点位PAHs分子组成分布特征及来源较为相似,且均对人体健康存在潜在危害;应进一步加强对PAHs浓度水平的控制,这不仅有利于持续改善PM2.5污染,也有助于减轻人体潜在的健康风险.   相似文献   

9.
马可婧  孙丽娟 《环境科学》2023,44(11):5997-6006
为了明确兰州市PM2.5中16种多环芳烃(PAHs)的污染特征和来源,采集了兰州市4个季节的PM2.5样品,运用气相色谱-质谱联用仪(GC-MS)对PAHs的浓度进行了分析,利用正定矩因子分解法(PMF)、聚类分析和潜在源因子分析法(PSCF)对PAHs的来源进行解析.结果表明,兰州市PM2.5ρ(PAHs)均值为:冬季[(118±16.2) ng·m-3]>秋季[(50.8±21.6) ng·m-3]>春季[(22.2±8.87) ng·m-3]>夏季[(4.65±1.32) ng·m-3].相关性分析表明,兰州市PM2.5和TPAHs均与温度呈现极显著的负相关性,与气压呈现极显著的正相关性,与风向、风速和相对湿度的相关性较差.各环PAHs在4个季节的占比相似,其中4环和5环的PAHs占比为最大,其次为6环和2~3环.兰州市PM2.5中PAHs的主要来源在春夏季为工业排放和生物质及天然气燃烧,秋季工业排放占主导地位,冬季主要为燃煤排放,交通排放在4个季节的贡献比较稳定.聚类分析和PSCF计算结果表明,来自蒙古国、新疆东北部和青海等地的气流对兰州市环境空气质量有重要的影响.  相似文献   

10.
为研究武汉市大气质量状况,在武汉市ID(工业区)、DT(中心城区)、BG(植物园)设3个采样点,连续1 a同步采集了大气中的PM2.5(细颗粒物)样品,并研究了其中PAHs(多环芳烃)的质量浓度、来源和健康风险.结果表明,武汉市ID、DT、BG采样点的ρ(PAHs)年均值分别为(75.60±28.12)(59.77±22.81)(24.27±9.15)ng/m3,并呈冬季最高、夏季最低的季节性变化趋势.PMF(正定矩阵因子分析)结果显示,ID、DT、BG采样点的PAHs的主要来源分别为燃煤和扬尘(35%和33%)、机动车和扬尘(30%和34%)、机动车和木质燃烧(33%和32%),在ID和DT采样点,扬尘对大气颗粒物中PAHs的贡献都很大,而燃煤和木质燃烧分别是ID和BG采样点PAHs的重要来源,在3个采样点中,机动车对颗粒物中PAHs贡献都较大,尤其是DT和BG采样点,机动车的贡献都超过30%.利用后向轨迹模型分析采样期间武汉市的气团来源,并结合每天的ρ(PAHs)发现,不同聚类气团对应的ρ(PAHs)差异很小,表明区域传输对武汉市PAHs贡献不大.通过武汉市大气颗粒物中PAHs吸入风险评估发现,武汉市PAHs的吸入风险范围在10-7~10-5之间,ID和DT采样点的部分人群的吸入风险稍高于安全范围(10-6以下),有潜在的致癌风险.   相似文献   

11.
汽车尾气中多环芳烃(PAHs)成分谱图研究   总被引:26,自引:9,他引:26  
采集并测定了不同型号、油品、里程数的汽车尾气中14种多环芳烃,对分析结果归一化处理后确定其多环芳烃成分谱图.研究表明,汽车在30rmin内排放的14种PAHs总浓度为41.53~121.1μg/m3;其中苯并(a)蒽(BaA)浓度最大,占总量的33.3%;萘(Naph)、苯并(ghi) (Bghip)、茚(1,2,3-cd)芘(In)分别为16.8%、12.9%和12.1%.相同里程数的柴油车排放PAHs总量大于汽油车;除BaA和Naph,柴油车主要排放苊(Ac)、芴(Fluor)、Bghip和In,而汽油车主要排放Bghip、In、苯并(k)荧蒽(BkF).柴油车排放3环PAHs的量大于汽油车,但5~6环PAHs的排放量小于汽油车;随着汽车里程数的增加,PAHs(特别是荧蒽(Flur)、芘(Py)、苯并(a)芘(BaP)、Bghip)的排放总量增加.  相似文献   

12.
为了研究浙北地区PM2.5中多环芳烃(PAHs)的季节性变化和它们的来源,于2014年11月~2015年11月收集了杭州和宁波2个城市中4个采样点的PM2.5样品,利用气-质联用仪测定了17种PAHs浓度.结果表明,∑PAHs年平均浓度范围为24.1~51.9ng/m3,平均值为(35.5 ±12.3) ng/m3.2~3环PAHs在PM2.5中的浓度较低(<1ng/m3),而4~6环PAHs占总PAHs的77.0%.∑PAHs的浓度与PM2.5呈相似的季节性变化特征,冬季浓度最高而夏季最低.惹烯作为软木燃烧的示踪物,冬季的浓度是夏季的4倍,表明在冬季软木燃烧的排放和对PM2.5的贡献都有所增加.除了夏季的2个城区站点,其它季节和站点∑PAHs浓度和PM2.5呈现一定的正相关性.特征PAHs比值显示,浙北地区气溶胶相关的多环芳烃主要来自燃烧和热解排放,如生物质燃烧和煤燃烧,而交通排放和石油挥发源的影响不大.  相似文献   

13.
为全面研究广州市土壤多环芳烃(PAHs)污染特征,采集广州市222个表层土壤样品进行分析,利用效应区间低/中值法(ERL/ERM)和(BaP)毒性当量法评价土壤PAHs污染生态风险状况,终生癌症风险增量模型评价土壤PAHs污染健康风险状况,特征化合物比值法和PMF模型对PAHs来源进行解析.结果表明,广州市表层土壤ω(∑16PAHs)为38~11 115 μg·kg-1,平均值为526 μg·kg-1,16种多环芳烃单体均为强变异;广州存在潜在生态风险,个别采样点的PAHs污染已存在较大的生态风险,整体处于轻度污染的状态;基于健康风险评价结果表明,成年和儿童的总致癌风险的贡献率都呈现为:皮肤接触 > 误食土壤 > 呼吸摄入,儿童的健康风险大于成年,健康风险总体处于可接受范围;源解析表明广州市土壤PAHs的主要来源为:煤炭源(37.1%) > 柴油源(32%) > 炼焦源 (17.3%) > 交通排放、生物质燃烧和石化产品挥发的混合源(13.6%),整体土壤PAHs来源属于混合源.研究结果丰富了对广州市表层土壤PAHs污染特征的认识,有助于推动土壤污染防治行动的开展.  相似文献   

14.
为了研究汕头海域红树林沉积物中16种优控多环芳烃(PAHs)污染状况,在义丰溪口、六合围和北港口3块红树林湿地采集柱状沉积物5个,分析了PAHs的含量水平、空间分布、来源和潜在的生态风险。结果表明,研究区红树林沉积物中PAHs含量范围是80.47~301.73 ng/g干重,义丰溪口六合围北港口。不同采样点柱状沉积物中PAHs含量从表层到下层的变化趋势不一致,六合围和义丰溪口趋势不明显,北港口呈下降趋势。PAHs空间分布主要受人类活动和周期性潮汐运动的影响。沉积物中PAHs来源于石油泄露、生物质和煤炭燃烧、发动机排放的混合源,生物质和煤炭燃烧是主要污染源。经沉积物质量标准,平均效应范围中值商和总毒性当量浓度3种方法评估,沉积物中PAHs的生态风险整体较低。  相似文献   

15.
广州市大气可吸入颗粒物(PM10)中多环芳烃的季节变化   总被引:24,自引:1,他引:24  
采集广州五山、荔湾(2002-06-12~2003-06-31)2个采样点共112个PM10样品进行了GC/MS分析,结果表明2采样点全年多环芳烃浓度范围为8.11~106.26 ng·m-3,呈现出夏季低冬季高的特征.PAHs化合物的相对分布也呈明显的季节变化,5~6环PAHs的比重夏季比冬季高,而3~4环PAHs的比重冬季比夏季高.冬季PAHs可分为2种模式,不同模式之间PAHs的浓度和分布特征有明显的差异.统计结果表明,广州市多环芳烃浓度变化主要受气象条件的影响,风速(当温度<20℃时)和温度(当温度>20℃时)是影响多环芳烃浓度最主要的因素.此外,本研究还表明,汽车尾气排放是广州市大气颗粒物多环芳烃污染最主要的污染来源.  相似文献   

16.
利用中流量大气综合采样仪采集太原市工业区和商业区PM10样品,使用GC/IRMS技术分析了PAHs的δ13C值(碳同位素组成),并根据碳同位素质量平衡计算了煤烟尘和机动车尾气对2类功能区的贡献率. 结果表明:工业区PM10中PAHs的δ13C值在-26.0‰~-24.5‰之间,随环数增加呈贫13C趋势,与煤烟尘δ13C值的变化趋势一致,表明煤烟尘是工业区的一个主要污染源;商业区PAHs的δ13C值在-26.6‰~-26.2‰之间,较工业区显著贫13C,商业区与工业区的污染源有明显差异;除机动车尾气和煤烟尘外,工业区和商业区还有其他污染源输入,其中工业区有生物质燃烧排放输入,商业区有机动车曲轴箱润滑油残渣输入;煤烟尘和生物质燃烧对工业区的贡献率分别为59.3%~70.8%和29.2%~40.7%,表明工业区煤烟污染严重;机动车对商业区PAHs的贡献率在86.1%~95.8%之间,是商业区PM10中PAHs的主要排放源,其中润滑油残渣的贡献率(在40.9%~85.3%之间)最大,机动车尾气的贡献率在8.3%~54.9%范围内,而煤烟尘的贡献率(在4.2%~13.9%之间)最小.   相似文献   

17.
为探讨长三角背景点有机气溶胶的污染特征和来源,于2018年夏季在崇明岛进行了为期3个月的PM2.5样品昼夜采集,使用气相色谱-质谱技术分析其中正构烷烃(normal alkanes,n-alkanes)和多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的质量浓度和分子组成,并结合后向轨迹和正交矩阵(positive matrix factorization,PMF)解析其来源.结果表明,观测期间崇明岛PM2.5的质量浓度为(33±21)μg·m-3,低于国家空气质量一级标准(GB3095-2012,35μg·m-3),但仍有部分时段污染较重,超标率为35%.其中n-alkanes和PAHs的浓度均值分别为(26±44) ng·m-3和(0. 76±1. 0) ng·m-3,污染期(PM2.5≥35μg·m-3)比清洁期(PM2.5<15μg·m  相似文献   

18.
长江武汉段不同粒径沉积物中多环芳烃(PAHs)分布特征   总被引:4,自引:1,他引:3  
冯精兰  牛军峰 《环境科学》2007,28(7):1573-1577
将采自长江武汉段的沉积物湿筛分成5个粒径的组分(>200 μm,200~125 μm,125~63 μm,63~25 μm,<25 μm),分别测定其中多环芳烃(PAHs)的含量.结果表明,不同粒径沉积物中PAHs组成基本相同,均以3环以上PAHs为主,但是∑PAHs浓度相差很大,范围为26.1~7 135.9 ng/g.其中,>200 μm沉积物中∑PAHs浓度最高,为7 135.9 ng/g;63~25 μm沉积物中∑PAHs浓度最低,为26.1 ng/g.占沉积物38.6%质量分数的<25 μm沉积物富集了沉积物中约75%的∑PAHs.总有机碳是影响PAHs在不同粒径沉积物中分布的主要因素,不同粒径沉积物中PAHs与总有机碳呈显著正相关(p<0.01).此外,有机质类型、结构也是影响PAHs在不同粒径沉积物中分布的重要因素.  相似文献   

19.
近年来,随着江苏省经济发展和城市化进程加快,环境管理加强,产业转型加快,很多重污染企业关闭和搬迁,出现较多污染场地。研究选取案例煤制气厂,在企业关闭后,需要进行土壤修复工作,修复后各单项污染物达标,但仍然有所存留,考虑到由于扩散和挥发作用仍有可能在转型之后对环境和人体健康造成影响,遂以美国环保署(USEPA)列出的16种PAHs污染物作为目标并参照原国家环保部提出的《场地风险评价技术导则》计算每种PAHs的健康风险及每种暴露途径对人体造成的健康风险,从而得到了对人类健康危害较大的污染因子与暴露途径,并提出改进意见。  相似文献   

20.
多环芳烃(PAHs)在环境中的污染越来越受到重视。文章采集海口湾7个代表性点位表层水样,分析其中16种多环芳烃(PAHs)的含量,探讨其可能的来源。结果表明:海口湾表层水体中总PAHs平均值为33.6 ng/L,变化范围为12.3~108 ng/L,PAHs的组成以2~4环为主。分析荧蒽/芘的比值表明,海口湾水体中的多环芳烃主要来源于石油污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号