首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈琳媛  邱振鲁 《环保科技》2024,(1):35-39+46
本研究采用热分解的方法制备花生壳生物炭,并用乙醇、硝酸和高锰酸钾溶液对其进行改性。分别研究不同方法改性后生物炭吸附Cd2+的性能对初始浓度、吸附时间和pH的响应特征并通过吸附热力学和动力学探索吸附机理。结果表明,改性后的花生壳生物炭对Cd2+的吸附量和去除率明显提高。在花生壳投加量一定的情况下,综合分析得知硝酸改性后对Cd2+吸附效果最佳,吸附量为48.47 mg/g,去除率为96.94%。最佳条件为:Cd2+初始浓度200 mg/L,pH为7,吸附时间120 min。  相似文献   

2.
酸改性处理常被用于生物炭的改性过程,但也存在酸消耗量大、废液处理难和成本高等问题.利用热解过程直接改性提高生物炭重金属的去除效果、降低改性成本,是未来实现改性生物炭广泛使用的重要前提.为评估CO2气氛热解法在生物炭制备和应用方面的优势和潜力,对CO2气氛热解与HNO3改性生物炭对Pb2+的去除性能进行对比分析.采用元素分析、傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)对生物炭的元素组成和结构特性进行表征.结果表明,500℃热解条件下,HNO3改性的生物炭产生了较多的C=O和O=C—O—等羧基类官能团,并引入了—NO(2(asy))和—NO(2(sym))基团,提高了生物炭的表面活性和络合能力.CO2气氛制备生物炭中含有较多的金属碳酸盐,可通过离子交换和共沉淀作用吸附去除Pb2+.此外,CO2改性生物炭具有较大的比表面积和更优的微孔结构,有利于Pb2+...  相似文献   

3.
磷元素向天然水体中的过度排放引发了严重环境问题.以吸附剂为技术核心的吸附法作为一种有效的除磷方法而受到研究人员的关注.本研究中,以壳聚糖、硫酸亚铁和硫化钠为改性剂研发的污泥生物炭对水中磷的去除效果良好.批次实验表明在最佳原料配比下,298 K时材料可吸附49.32 mg?g-1的磷.此外,实验模拟表明材料对磷的吸附符合...  相似文献   

4.
芦苇基和污泥基生物炭对水体中诺氟沙星的吸附性能   总被引:7,自引:6,他引:7  
以芦苇秸秆和市政污水处理厂污泥为原料,在500℃的条件下制备了芦苇基和污泥基生物炭.利用比表面积测定法(BET)、扫描电镜(SEM)、能谱分析(EDS)和红外光谱(FTIR)研究了生物炭的结构与性质,并通过单因素实验研究p H、吸附时间、温度、诺氟沙星(NOR)初始浓度对吸附效果的影响,初步讨论了吸附机制.结果表明,NOR在芦苇基和污泥基生物炭上的吸附在12 h分别达到总吸附量的70%、60%以上;芦苇基和污泥基生物炭对NOR的饱和吸附量分别为2.13 mg·g-1和2.09 mg·g-1;降低溶液p H有利于NOR的吸附;生物炭对NOR的吸附行为符合准二级动力学方程,其等温吸附曲线符合Langmuir方程.对吸附过程吉布斯自由能(ΔG)、焓(ΔH)以及熵(ΔS)的计算证明生物炭对NOR的吸附是自发的吸热反应;红外光谱分析表明,生物炭上较多含氧官能团为NOR的吸附提供了吸附点,有利于NOR分子与生物炭间形成作用力较强的氢键,氢键为NOR吸附在生物炭上的主导作用力.  相似文献   

5.
利用共沉淀和水热法于生物炭(BC250、BC350、BC450、BC550和BC650)负载CuFeO2,得到的复合材料对水中四环素(TC)具有较好的去除效果.CuFeO2与BC450质量比为2 :1的CuFeO2改性生物炭(CuFeO2/BC450=2 :1)对TC的吸附性能最强.TC于CuFeO2/BC450=2 :1的吸附符合颗粒内扩散模型,表明吸附是界面和孔隙扩散控制的过程.在中性pH、298 K下,CuFeO2/BC450=2 :1对TC的Langmuir最大吸附量为82.8 mg ·g-1,远大于BC450的13.7 mg ·g-1和CuFeO2的14.8 mg ·g-1.热力学结果表明,CuFeO2/BC450=2 :1对TC的吸附是自发和吸热过程.随pH增加,CuFeO2/BC450=2 :1对TC的吸附去除呈先增加后降低的趋势,中性条件时效果最佳.CuFeO2/BC450=2 :1对TC的强吸附得益于CuFeO2负载对材料孔隙结构的改善、比表面积的增大和表面官能团、电荷属性的改变.研究结果为净化抗生素污染提供了一种高效的磁性吸附剂.  相似文献   

6.
以椰壳为原料制备生物炭,采用365 nm紫外光辐照增加吸附剂表面含氧官能团,探究其对生物炭吸附气体和水中苯的影响.理化表征和吸附实验结果表明,生物炭表面含氧官能团增加后,对气体中苯的吸附量提高9.25倍,而对水中苯的吸附量却降低14.64%.生物炭对气体中苯的吸附过程符合Elovich动力学模型,而对水中苯的吸附过程符合准二级动力学模型.含氧官能团的引入使生物炭对气体和水中苯的等温吸附过程从符合Freundlich模型变为符合Langmuir模型.Weber-Morris模型分析认为,增加含氧官能团,可增强生物炭对气体中苯的表面吸附速率,却阻碍了苯从水中向吸附剂颗粒内扩散的过程,水分子与苯竞争吸附是导致生物炭对水中苯吸附量降低的主要原因.  相似文献   

7.
生物炭及改性生物炭对水环境中重金属的吸附固定作用   总被引:2,自引:6,他引:2  
生物炭是由植物或动物废弃生物质在完全或部分缺氧条件经裂解炭化产生的一类高度芳香化、抗分解能力极强的碳质固体物质,是一种富含碳元素的有机连续体。生物炭比表面积大、疏松多孔,含有羟基、羧基、羰基等活性官能团,对多种重金属离子具有吸附固定作用,可以用来去除或削减水体中的有毒有害重金属。此外,利用酸、碱、石墨烯等物质对其进行修饰或改性,可提高对重金属的吸附能力。根据当前研究现状,综述了不同生物炭对水溶液中重金属离子的去除作用,并比较了一些生物炭改性前后与重金属的作用效果差异,同时归纳了生物炭与重金属的相互作用机理及其影响因素。在此基础上,展望了生物炭在去除水体环境中有毒有害重金属的研究方向,以期望生物炭得到更好应用。  相似文献   

8.
玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能   总被引:6,自引:0,他引:6  
为探明玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能,研究了其对NH4+-N、NO3--N和NO2--N的吸附动力学过程;并用等温吸附模型对NH4+-N和NO3--N的吸附过程进行拟合,探讨制得生物炭对无机氮的吸附机理.结果表明,400℃和600℃制得玉米秸秆和玉米芯生物炭均呈碱性,表现为400℃ < 600℃;同种原材料,与400℃制得生物炭相比,600℃制得生物炭碱性含氧官能团数量较多,而酸性含氧官能团数量较少.400℃制得生物炭对NH4+-N的吸附能力较强(玉米秸秆和玉米芯生物炭的平衡吸附量分别为4.22和4.09mg/g);而600℃制得生物炭对NO3--N和NO2--N的吸附能力较强(玉米秸秆和玉米芯生物炭对NO3--N的平衡吸附量分别为0.73和0.63mg/g;对NO2--N的平衡吸附量分别为0.55和0.35mg/g).与NO3--N和NO2--N相比,玉米秸秆和玉米芯生物炭对NH4+-N的吸附能力更强,4种生物炭对NH4+-N的平衡吸附量是NO3--N/NO2--N的4.29~20.2倍.等温吸附模型拟合研究表明,玉米秸秆和玉米芯生物炭对水溶液中NH4+-N和NO3--N的吸附过程均可用Freundlich模型描述,其在生物炭表面的吸附是多分子层吸附.  相似文献   

9.
为解决废水磷回收和污泥资源化利用问题,以污水处理厂污泥为前驱体,采用镁盐溶液浸渍和高温热解方法,制备系列镁改性污泥基生物炭(MgxBC),研究了MgxBC对水中磷酸盐的吸附性能,以及在过一硫酸氢钾复合盐(PMS)氧化剂存在下对共存抗生素的催化降解性能.结果显示:氮气氛、1mol/L镁盐加入量制备的Mg1BC相比于未改性污泥基生物炭(BC),对磷的Langmuir饱和吸附容量可达63.2mg/g(为BC的近3倍);除极酸条件下(pH0<4),Mg1BC的磷去除率均大于99%;水中共存离子对Mg1BC吸附磷影响较小,Mg1BC具有较强的适用性.此外,Mg1BC可催化活化PMS,显著提高与磷共存抗生素(如四环素(TC)、磺胺二甲基嘧啶(SMT))的降解性能,实现吸附磷和高效去除抗生素的双重目的.  相似文献   

10.
酸/碱改性香蒲生物炭对水中磷的去除及其机制研究   总被引:1,自引:0,他引:1  
雨水径流中存在的磷污染问题严重威胁生态环境,而传统的雨水径流处理设施,如雨水花园、渗滤沟等,对磷的去除率较低且成本较高.以湿地中收割的香蒲为原材料,酸改性后制备的生物炭(TH7)的除磷效果非常好,明显优于碱改性生物炭(TOH7):与原生物炭(T7)相比,酸改性生物炭大大提高了磷的去除效率,可从T7的65%提高至94%,而碱改性生物炭无除磷效果.TH7的表面孔隙发达,比表面积高达434.2m2·g-1,对磷的吸附符合Freundlich模型和伪二级动力学模型,其吸附属于物理化学吸附,具体的机制为孔隙填充、表面化学沉淀、氢键结合.研究表明,以香蒲为原料制备的改性生物炭是一种效果优越的除磷吸附剂,可应用于植草沟、雨水花园等以填料为主要吸附层的径流处理设施中.  相似文献   

11.

以蓝藻为原料制备生物炭,通过考察不同温度制备的蓝藻生物炭对四环素的吸附效能,筛选最优制备温度。采用液相还原法制备不同铁炭比的铁改性蓝藻生物炭,研究其对四环素的去除效能、影响因素及去除机理。结果表明:在700 ℃、铁炭质量比为1∶1条件下制备的铁改性蓝藻生物炭对四环素具有高效去除能力,60 min去除率可达87.2%,为改性前的1.2倍,吸附类型符合伪二级动力学方程(R2>0.99)。通过傅里叶红外光谱、扫描电镜、X射线光电子能谱、X射线衍射探讨铁改性蓝藻生物炭去除四环素性能与其结构的关系。结果表明,铁改性蓝藻生物炭对四环素的去除机理主要为吸附和化学降解作用,零价铁作为电子供体促进氧化还原反应的发生,含氧官能团作为电子转移桥梁在吸附降解过程中起着重要作用。影响因素试验结果表明,阴离子对铁改性蓝藻生物炭去除水中四环素效能的影响程度为SO4 2−>Cl,阳离子影响程度为Ca2+>Na+,有机质黄腐酸相对于离子强度影响程度较弱。铁改性蓝藻生物炭对四环素类抗生素具有良好的去除能力,可为蓝藻资源化提供思路。

  相似文献   

12.
生物炭因其具有比表面积大、孔隙发达、表面官能团丰富等特点而广泛应用于水中Cr(Ⅵ)的去除。但是,生物炭对水中Cr(Ⅵ)的去除效果并不理想,而且回收困难,所以限制了生物炭在含Cr(Ⅵ)废水中应用。近年来,研究发现通过酸碱、金属、金属氧化物、有机化合物和纳米材料等对生物炭进行改性,增大了生物炭的比表面积,提高了含氧官能团的比例,引入了新的金属颗粒,从而提高了生物炭对Cr(Ⅵ)的去除能力。文章根据目前的研究现状,综述了改性生物炭对水中Cr(Ⅵ)的去除作用,并比较了不同改性方法对Cr(Ⅵ)的作用效果差异,同时归纳了改性生物炭与Cr(Ⅵ)的相互作用机制及其影响因素。最后,展望了改性生物炭未来的的研究方向,以期望改性生物炭得到更好的应用。  相似文献   

13.
采用超声辅助-水热法将聚乙烯亚胺(PEI)成功接枝到玉米芯生物炭表面,制备了PEI改性生物炭材料(PBC),并通过X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积分析仪和傅里叶红外光谱仪(FTIR)等方法对其表征.结果表明,虽然PEI通过CN、C-N和离子键与生物炭表面的活性基团链接,但制备的PBC材料仍保持原生炭的无定型结构和形貌,且比表面积高达928.1 m2·g-1.同时,还研究了PBC的吸附性能和热力学行为,结果表明,吸附过程符合Langmuir等温吸附机制,属于微孔单层吸附过程,而且随温度的降低,吸附量增大,在10、20和30℃时,饱和吸附量(Qm)分别为6.47、4.75和2.64 mmol·g-1.此外,PBC重复利用性能良好,容易实现热再生,即使循环利用10次,吸附性能也无显著变化(p>0.05),且穿透吸附量(QB)保持在2.6~2.7 mmol·g-1.  相似文献   

14.
以牛粪为原料在400,500,600 ℃条件下限氧热解制备牛粪生物炭(BC),然后以不同质量比将升华硫和BC混合共热解制备硫改性牛粪生物炭(BCS)。使用元素分析仪、SEM、FTIR、XPS和BET对制得的BC和BCS进行了表征,并研究了各BC和BCS对Hg2+的吸附特性。结果表明:热解过程使BC和BCS变得粗糙多孔,Hg2+被吸附到生物炭表面和孔道内;BC和BCS的吸附过程符合准二级动力学模型,BCS对Hg2+的吸附平衡时间仅为30 min,且吸附过程不受pH影响;Langmuir模型可较好地描述BC吸附过程,吸附量随热解温度的升高而降低,BCS吸附过程符合Freundlich模型,吸附能力较BC显著提升,最大拟合吸附量达到407.81 mg/g;BCS的吸附稳定性较高,在各解吸剂中的解吸率均低于5%;BC主要吸附机理为官能团络合,BCS主要吸附机理为HgS沉淀。因此BCS是一种高效稳定的Hg2+吸附材料。  相似文献   

15.
新污染物是一类浓度相对较低但毒性很高的污染物,可以在生物体内富集,并通过食物链转移到人体,对环境生态和人体健康都构成很大威胁。此外,新污染物在环境中的危害具有潜在性、隐蔽性和持久性,因此选择适当的方法对新污染物进行风险管控具有重要的现实意义。在我国推行“双碳行动”的大背景下,人们对生物炭吸附去除新污染物产生了广泛的研究兴趣。然而,需要注意的是,原始生物炭在许多应用中存在局限性,例如吸附能力弱、选择性差、化学稳定性较低等。因此,有必要对生物炭进行改性,以提高其在水污染处理中的应用。目前,生物炭改性方法中,化学改性是最为广泛应用的一种方法。本文介绍了三种常见的化学改性方法,包括酸改性、碱改性以及金属盐/氧化物改性,并阐述它们提高生物炭物理化学性能的机制。此外,还分析了化学改性生物炭介导新污染物去除的增效机制,主要涉及吸附和高级氧化过程。总结了近五年来化学改性生物炭对药品及个人护理产品(PPCPs)、内分泌干扰物(EDCs)、全氟化合物(PFCs)和微塑料(MPs)等典型新污染物去除方面的研究进展。最后,本文提出了化学改性生物炭介导新污染物去除的未来探索方向,旨在为水中新污染物的绿色高效去除...  相似文献   

16.
为获得培氟沙星废水高效去除的环境友好型吸附剂,以城市剩余污泥为原料制备了SBC(污泥基生物炭),并采用氧化石墨烯(GO)对其改性得到GO-SBC(氧化石墨烯改性生物炭),利用SEM和FTIR对其进行表征,通过静态吸附试验探讨了生物炭对培氟沙星的去除效果,并通过吸附模型和FTIR、XPS表征技术进一步探究了GO-SBC对培氟沙星的吸附机理.结果表明:①改性后的GO-SBC表面更加粗糙,生物炭表面含氧官能团数量增加.②动力学吸附研究表明,GO-SBC对培氟沙星的最大吸附容量为137.51 mg/g,比SBC对培氟沙星的吸附容量提高了40.32%,且GO-SBC对培氟沙星的吸附更符合伪二级动力学模型,表明吸附过程主要以化学吸附为主.③GO-SBC对培氟沙星的吸附符合Freundlich等温吸附模型,表明该吸附过程为多层吸附.④热力学研究表明,吸附过程为自发吸热反应.⑤GO-SBC对培氟沙星的吸附机制主要有两种作用,一种是π-π相互作用,另一种是GO-SBC的N—H与培氟沙星的C—H相互作用.研究显示,GO-SBC是一种高效去除培氟沙星的吸附剂,这为城市剩余污泥的资源化利用提供了出路,也为抗生素废水治理提供了方法.   相似文献   

17.
作者设计了一种含有表面衍生官能团的生物质材料,用于吸附印染、脱硫等废水中的可溶性铅污染。在500℃热解下,采用熔盐法制备生物炭材料,其产率接近40%,具备介孔/大孔杂化特性,比表面积接近300 m2/g。通过高锰酸钾改性,发现其对Pb2+的最大吸附量可以达到商业活性炭的8倍。研究初始pH、吸附时间、污染物浓度等因素对生物炭吸附Pb2+的影响,发现生物炭对Pb2+的吸附倾向遵循准二级动力学模型和Langmuir等温吸附模型。结合生物炭吸附剂使用前后的材料表征,阐述了包括静电作用、π-π作用、离子交换和络合作用在内的吸附机制。研究结果还表明生物炭BC-B在酸性条件下可以快速有效地吸附Pb2+,在生物炭投加量=0.5 g/L、[Pb2+]=400 mg/L、pH=7的条件下对Pb2+的最大吸附量达到440.0 mg/g。同时循环再生实验和工业废水应用实验证明,该生物炭在治理含重金属的酸性工业废水中具有潜力。  相似文献   

18.
采用磷酸作为活化剂对黍糠生物炭进行改性,得到富含活性官能团的功能性生物炭(fCBC),并将其作为硫化锰(MnS)的载体,最终成功制备出硫化锰负载的磷酸改性生物炭(MnS-fCBC),可用于水体中镉(Cd)的高效去除.系统评价了初始浓度、初始pH值以及MnS-fCBC投加量对于吸附反应的影响. MnS-fCBC表现出优越的吸附Cd的能力,在初始Cd浓度为200mg/L、pH=6和投加量1g/L的条件下,MnS-fCBC对于Cd的吸附容量最大,达145.15mg/g.吸附反应受pH值影响显著,在偏酸性条件下能取得较好的去除效果.通过X射线衍射仪(XRD)和拉曼光谱仪(Raman)对MnS-fCBC进行结构表征分析,结合批次试验探讨了Cd的去除机理.结果表明,表面络合和化学沉淀是Cd去除的主要机理.材料的回用性能试验显示,在5次循环使用后,材料依然有较高的Cd去除能力,表明其具有较高的可重用性.因此,MnS-fCBC可作为一种高效的Cd吸附剂,应用于含Cd废水处理.  相似文献   

19.
FeCl3改性污泥生物炭对水中吡虫啉的吸附性能研究   总被引:1,自引:0,他引:1  
邹意义  袁怡  沈涛  周扬 《环境科学学报》2021,41(9):3478-3486
以脱水污泥为原料,制备污泥生物炭(SBC)和FeCl3改性污泥生物炭(Fe-SBC)处理低浓度吡虫啉(IMI)废水(浓度为10 mg·L-1),考察SBC和Fe-SBC对IMI的吸附性能及影响因素,并探究其吸附机理.采用SEM、XRD、FTIR、BET及元素分析等探得污泥生物炭FeCl3改性成功.Fe-SBC对IMI的最大吸附量为4.915 mg·g-1,是SBC的1.97倍,表现出更好的IMI吸附性能.pH和离子强度的变化对Fe-SBC的吸附性能影响较小,最大波动幅度分别为4.4%和7.8%.两种生物炭对IMI的吸附均符合准二级动力学模型,Freundlich模型可以更好地描述其等温吸附曲线.热力学研究表明,SBC吸附IMI是非自发吸附,而Fe-SBC是自发吸附.Fe-SBC对IMI的吸附机理包括静电作用力、氢键作用力及π-π键相互作用力.多次热解再生后的Fe-SBC对IMI的去除率仍可达93.088%.  相似文献   

20.

为研发治理地下水Cr(Ⅵ)污染的可行除铬材料,以碳热法制得生物炭负载纳米零价铁(BC-nZVI),并通过对BC-nZVI硫化改性制备得到改性材料(M-BC-nZVI),采用除铬容量、铬铁比(Cr/Fe)、反应活性分析M-BC-nZVI的除铬优势,通过模拟柱试验建立失效速率模型,从而推算M-BC-nZVI完全失效的除铬容量,最后与相关文献数据进行对比,分析M-BC-nZVI除Cr(Ⅵ)的应用可行性。结果表明:M-BC-nZVI材料的除铬容量、Cr/Fe、拟一级反应速率常数(kobs)分别是BC-nZVI的1.86倍、1.95倍和3.00倍,因此相对于BC-nZVI来说M-BC-nZVI更具除铬优势;各模拟柱在运行过程中无明显堵塞情况,且随着进水浓度的升高,M-BC-nZVI的失效速率常数变大。当失效除铬速率为初始除铬速率的1.0%、进水Cr(Ⅵ)浓度为5 mg/L时,除铬容量最高,可以达到12.70 mg/g;对比M-BC-nZVI与其他文献报道的铁基材料及铁基改性材料的Cr/Fe可知,M-BC-nZVI的Cr/Fe为其他文献的1.06~42.06倍,故从材料的除铬性能来看,M-BC-nZVI应用于可渗透反应墙处理地下水Cr(Ⅵ)污染可行。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号