首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
肖婷玉  束韫  李慧  王涵  李俊宏  严沁  张文杰  姜华 《环境科学》2024,45(3):1265-1273
为量化评估太原市“十四五”大气污染防治政策的减污降碳协同效益,使用京津冀温室气体-空气污染相互作用与协同模型(GAINS-JJJ),模拟评估13项大气污染防治措施的减排潜力,CO2的协同减排效益.2025年政策情景下一次PM2.5、PM10、SO2、NOx、VOCs和NH3分别减排1.8(5%,相对于基准情景减排比例,下同)、2.5(2%)、3.7(16%)、20.0(27%)、13.6(15%)和0.0 kt(0%),CO2减排9.0 Mt(13%),CH4排放增加203.3 kt(相对于基准情景增加25%).SO2、NOx与VOCs减排主要发生在电力、工业燃烧与溶剂使用部门,CO2减排主要发生在工业燃烧部门,CH4排放量增加是由于煤矿开采活动水平升高.限制“双高”行业的能源消耗,严禁新增产能以及可再生能源发电比例提升措施的CO2协同减排效益最高.VOCs具有优异协同减碳效益.建议太原市进一步推进终端电气化政策,同时需加大提升电力行业清洁能源比重和可再生能源发电的消纳能力.  相似文献   

2.
辽宁省2000~2030年机动车排放清单及情景分析   总被引:2,自引:2,他引:0  
机动车排放已经成为城市地区大气污染的主要来源.基于COPERT模型和ArcGIS技术,建立了2000~2030年辽宁省机动车排放清单,分析6类污染物(CO、NMVOC、NOx、PM10、SO2和CO2)排放的总体趋势与空间演变特征,同时以2016年为基准年,基于情景分析法设置8类控制措施情景并评估不同控制措施对污染物的减排效果.结果表明2000~2016年,机动车的CO、NMVOC、NOx和PM10排放量呈现先增后降的趋势,SO2排放量呈现波动变化,而CO2排放量则呈现持续增长态势.轻型载客车和摩托车是CO和NMVOC排放的主要贡献车型,重型载客车和重型载货车是NOx和PM10的主要排放源,SO2和CO2则主要是由轻型载客车排放.辽宁省中部及南部机动车排放量明显高于辽东和辽西.从城市层面来看,排放主要集中在沈阳市和大连市.情景分析表明,实施更加严格的排放标准可以增强减排效果,且升级排放标准的时间越提前减排效果越好.综合情景将实现减排最大化,强化综合情景对CO、NMVOC、NOx、PM10、CO2和SO2的削减率达到了30.7%、14.3%、81.7%、29.4%、12.3%和12.1%.  相似文献   

3.
依托稻田大气CO2摩尔分数(x[CO2])升高平台FACE (free-air CO2 enrichment),采用静态透明箱-气相色谱法研究x[CO2]升高(正常x[CO2]+200 μmol·mol-1)对高、低应答水稻(产量对x[CO2]升高的响应分别为>30%和10%~15%)稻田N2O排放的影响.本试验设置4个处理:A-W (正常x[CO2]+低应答水稻)、F-W (x[CO2]升高+低应答水稻)、A-S (正常x[CO2]+高应答水稻)和F-S (x[CO2]升高+高应答水稻).结果表明,对比正常x[CO2]处理(A-S和A-W),x[CO2]升高条件下高、低应答水稻(F-S和F-W)稻田N2O排放分别降低52.54%(P<0.05)和38.40%(P<0.05),水稻产量分别增加22.96%(P<0.05)和12.11%(P>0.05),稻田N2O排放强度分别降低61.68%(P<0.05)和45.13%(P<0.05).另外,高、低应答水稻稻田N2O排放与稻田土壤NH4+-N含量呈显著相关关系,而与NO2--N含量无显著相关.x[CO2]升高条件下,土壤温度是影响高应答水稻稻田N2O排放的重要因素.综合考虑,未来x[CO2]升高条件下,高应答水稻品种的"增产减排"效果最佳.  相似文献   

4.
邹超  汪亚男  吴琳  何敬  倪经纬  毛洪钧 《环境科学》2024,45(3):1293-1303
公交车队电动化是道路交通部门实现减污降碳的重要手段,评估当前公交车队电动化减排成效,对推进大中型城市公交全面电动化具有重要参考意义.基于燃料生命周期法分析了郑州市公交车队电动化前后CO2和污染物排放特征,并评估了不同电动化情景下的车队排放.结果表明,本轮电动化使公交车队燃料生命周期内CO2和PM2.5排放量分别增长32.6%和42.6%,CO、NOx和VOC排放量下降了28%,34%和25%.优化发电结构对于电动化过程中的CO2及PM2.5减排尤为重要,在全面电动化和发电结构优化的最佳情景下,CO2、CO、NOx、VOC和PM2.5减排可达38.7%、80.1%、84.4%、92.2%、30.2%.在全面电动化进程中,应优先对中长里程线路车辆进行电动化替换,此外,插电混动天然气车型的纯电动化替换对减排利弊兼有,同步推进车队替换和电力结构调整进程才能实现减污降碳协同增效.  相似文献   

5.
当前,我国面临着大气污染治理与碳减排的双重挑战,"减污降碳"成为了社会经济绿色转型的重要抓手.大气污染物和CO2排放清单是"减污降碳"工作的基础支撑,但已有研究存在着物种覆盖不全、源类体系不一、时间范围较窄等问题.基于统一的源分类体系与源排放表征技术,建立了河北省2013~2020年排放清单,据此分析了排放的总量趋势、结构演变、变化驱动、协同效益和区域分布.研究期内,河北省取得了社会经济发展与人为源排放控制的双赢,SO2排放在"大气十条"期间下降速度较快,VOCs和NH3排放在"蓝天保卫战"期间减排效果更好,NOx和PM2.5排放的下降速度相对稳定,CO2排放略有上升.燃煤治理有效削减了大气污染物和CO2排放,重点行业超低排放改造降低了SO2、NOx和PM2.5排放,但VOCs治理力度有待提升.电力源和民用源实现了大气污染物与CO2的协同减排,散煤治理从源头优化了能源结构,使得民用源具有更高的减排协同度.河北省"减污降碳"的重点区域为石家庄、唐山、邯郸、保定和廊坊.研究提出的方法与结论可为区域"减污降碳"工作提供技术借鉴与决策参考.  相似文献   

6.
铁路运输是现代运输的主要方式之一,在空气质量改善和"双碳"目标的双重约束下,厘清铁路运输CO2和污染物排放趋势,对于交通领域的减污降碳工作具有重要意义.基于燃料生命周期法分析了中国火车2001~2018年的CO2和污染物排放特征,在此基础上,结合情景分析评估了2019~2030年的铁路排放趋势.结果表明,随着铁路电气化进程的推进、内燃机车新车投入使用和燃油标准的不断升级,铁路运输燃料生命周期的CO2和污染物排放整体分别呈上升和下降趋势,而其上游阶段的排放占比逐年升高.2018年铁路运输的CO2、NOx、CO、BC和SOx排放总量分别为3780.29万t、11.98万t、3.94万t、0.20万t和3.08万t.情景分析表明,加快电力结构改善和降低单位运输能耗分别是降低铁路CO2、SOx和NOx、BC、CO排放的最佳单一控制手段.积极应对铁路减污降碳工作的综合情景下,CO2、NOx、CO、BC和SOx的减排率可分别达35%、37%、39%、32%和45%.电力结构改革和铁路电气化进程的停滞均会造成铁路运输排放总量的显著增加,铁路减污降碳工作仍需高度重视.  相似文献   

7.
中国中东部地区的空气污染主要集中在京津冀、长三角、珠三角、东北地区及汾渭平原等区域,各区域的污染排放特征各异.本文应用基于CMAQ(The Community Multiscale Air Quality)模式的自适应"nudging"源反演方法,反演中国中东部地区2016年12月—2017年1月逐日NOx污染源,分析上述主要污染区的污染物排放强度空间分布特征,并与2016年MEIC(The Multi-resolution emission inventory for China)排放源进行比较,检验反演源的可靠性.结果表明,2016年冬季各个区域反演源NOx排放强度空间分布特征与2016年MEIC排放源基本一致.京津冀地区高强度排放区域形成沿山前区域东北-西南走向的NOx高强度排放带;长三角地区NOx高强度排放区域位于常州、苏州、上海和湖州等城市构成的城市群;珠三角地区NOx高强度排放区域位于以广州为中心的大范围城市群且排放强度呈现向四周逐渐降低的放射状分布;东北地区NOx高强度排放区域空间分布特征呈现以城市为中心且稀疏分布;汾渭平原排放区域呈现以城市为中心且向峡谷中间集中分布,排放区域轮廓与汾渭平原狭长的新月状相符.  相似文献   

8.
京津冀及周边地区秋冬季大气污染物排放变化因素解析   总被引:4,自引:4,他引:0  
唐倩  郑博  薛文博  张强  雷宇  贺克斌 《环境科学》2021,42(4):1591-1599
基于大气污染源排放清单技术方法,定量分析2016~2017年秋冬季"跨年霾"至2019~2020年秋冬季"疫情霾"期间京津冀及周边地区主要大气污染物排放量变化,解析大气污染防治政策实施带来的减排和疫情造成的活动水平下降对主要污染物排放的贡献,并利用空气质量模型模拟分析不利气象条件下措施减排和疫情影响对空气质量改善的贡献.结果表明,从"跨年霾"(2016-12-16~2017-01-14)至"疫情霾"(2020-01-22~2020-02-14)该区域主要大气污染物排放量大幅下降50%左右,不利气象条件下,区域PM2.5平均浓度可削减40%以上.措施减排主要来自火电、钢铁等重点工业行业提标改造和工业锅炉、民用燃煤等燃煤源治理,对SO2和PM2.5排放量的削减贡献较大,贡献率分别为67.1%和53.4%;疫情主要影响移动源和轻工业活动水平,对NOx和VOCs排放量的削减贡献较大,贡献率分别为71.9%和68.2%.措施减排对区域空气质量改善贡献突出,有效抑制了重污染过程的强度和范围.在"跨年霾"的不利气象条件下,措施减排使区域PM2.5平均浓度下降26%,重度及以上污染天数减少44%.受疫情影响,区域PM2.5平均浓度继续下降24%,重污染持续时间和范围进一步缩减.  相似文献   

9.
2013-2017年珠江三角洲主要大气污染控制措施减排效果评估   总被引:3,自引:0,他引:3  
自2013年《大气污染防治行动计划》发布以来,珠江三角洲(PRD)地区实施了严格的大气污染防控政策,在全国率先实现PM2.5浓度连续3年达标,然而,已实施的控制措施对污染物的减排效果尚不清楚.因此,本研究通过广泛收集2013—2017年珠三角地区大气污染源活动水平数据与控制措施,建立2013—2017年实际控制与未控制情景的污染物趋势排放清单,对主要控制措施的减排效果进行了量化.结果表明,2013—2017年珠三角地区SO2、NOx、PM10、PM2.5和VOCs 5种污染物排放分别下降了55%、24%、55%、54%和10%.相比于未控制情景,实际控制情景下2017年5种污染物分别实现61%、40%、68%、70%和41%的减排.在各类管控措施中,工业提标对5种污染物减排分别贡献了39%、46%、66%、69%和25%;销号整治对VOCs减排贡献最大(32%),对其它污染物减排贡献约10%;清洁能源改造主要对SO2和PM减排有所贡献,其中,煤改气、低硫煤、低硫油对SO2减排有主要贡献(均为15%左右),低灰分煤对PM10(12%)和PM2.5(19%)减排有较大贡献;机动车提标、淘汰黄标车对NOx(22%、17%)和VOCs(23%、12%)减排有较大贡献.本研究可为珠三角和其它地区针对不同大气污染物科学制定防控政策与措施提供基础数据和科学支撑.  相似文献   

10.
蒋春来  宋晓晖  钟悦之  孙亚梅  雷宇 《环境科学》2018,39(11):4841-4848
基于我国2011~2015年水泥企业逐条生产线基础信息、活动水平及控制技术等数据,建立了水泥工业NOx排放量计算方法和动态排放数据库.利用该方法,计算了2011~2015年逐条水泥生产线NOx排放量,分析了2010~2015年我国水泥工业NOx排放特征.结果表明,我国水泥工业NOx排放量变化范围为168~199万t,自2010年的169万t增加到2012年的199万t,达到排放峰值,随后逐年下降,到2015年与2010年基本持平.水泥工业NOx排放的地区分布不均衡,2015年安徽、四川、河南、湖南、云南、山东是排放量最大的省份,占全国排放总量的40%,上海、内蒙、山西、新疆、湖南、云南、四川是单位熟料NOx排放强度最大的省份.从生产线规模来看,规模≥ 4000 t·d-1的熟料生产线产量占比和NOx排放量占比均最大,分别为68.5%和66.5%,单位熟料NOx平均排放强度最低.水泥生产工艺结构的转变及水泥工业降氮脱硝工作的开展是影响水泥工业大气NOx排放特征的主要因素.  相似文献   

11.
2010~2017年四川省机动车污染物排放趋势分析   总被引:2,自引:1,他引:1  
四川省机动车保有量日益增加,本研究基于特定的清单计算方法及多口径的活动水平数据,得到四川省2010~2017年机动车尾气污染物排放量.结果表明,四川省小型载客汽车的保有量增长最快,不管是机动车还是小型载客车保有量的增速,均高于全国平均增速;2017年四川省机动车共排放CO、NOx、SO2、NH3、HC、PM2.5、PM10、BC和OC分别为706.9、275.3、0.3、5.7、164.8、8.1、8.9、4.1和1.4 kt,除NH3以外,四川省所排放的其他污染物呈现波动中下降的趋势,在2014~2016年前后达到高值.柴油车的保有量变化与NOx的变化显示出较强的相关性;新车排放标准加严是最具有减排潜力的措施之一,同时随着实施年份的增长,显示的减排潜力越大,燃油品质的提升对于污染物的减排每年也会有6%以上的减排效力.未来应将HC和NOx减排作为四川省机动车管控的重要内容.  相似文献   

12.
基于WRF-Chem模式模拟了关中盆地2019年1月2—14日一次颗粒物污染事件,评估了NOx和SO2减排及其在颗粒物污染中的协同作用对PM2.5污染的影响。敏感性实验结果表明:NOx减排可使PM2.5中硝酸盐含量下降,但大气中O3浓度上升,大气氧化能力增强,其他二次组分上升,导致PM2.5下降不明显;SO2人为源减排可使硫酸盐质量浓度下降,但由于硫酸盐在PM2.5中占比较低,当SO2减排75%时,PM2.5仅下降1.74%;当减排比例较高时,NOx和SO2同时减排更有利于颗粒物污染防治。PM2.5质量浓度在NOx和SO2同时减排75%时比分开减排75%时多下降0.75%,主要是硫酸盐下降所致;对气溶胶含水量进行分析,发现NOx对气溶胶含水量影响较大,当NOx减排75%时,气溶胶含水量可下降15.51%;此外,NOx和SO2同时减排比分开减排时气溶胶含水量更低,更不利于二次颗粒物生成。  相似文献   

13.
工业园区由于资源能源消耗和污染排放总量大,能量梯级利用水平普遍较低,在我国推进生态文明建设的过程中受到了重点关注.本研究以河南省一个典型的高能耗工业园区(永城经济技术开发区)为研究对象,对能量梯级利用措施带来的节能效果和大气污染物减排效益进行了定量的研究,并且结合CALPUFF模型分析园区能量梯级利用措施对周边城市大气环境质量的影响.结果表明:①通过应用能量梯级利用措施,有效地提高了能源的使用效率,并减少了SO2、NOx以及颗粒物等主要大气污染物的排放量.园区12条能量梯级利用链条的节能总量为10000 TJ, SO2和NOx排放量分别减少为611 t和1407 t, PM10 和PM2.5分别减少为82 t和45 t.②CALPUFF模拟结果显示园区采用能量梯级利用措施在一定程度上改善了城市大气环境的空气质量.永城市2017年4种污染物的最大1 h平均浓度在有能量梯级利用措施情景(S2)下和无能量梯级利用情景(S1)相比均有所降低,其中NOx降幅最为明显,在春秋两季为70 μg·m-3左右.  相似文献   

14.
随着社会和经济的高速发展,能源消耗量快速增加,随之而来的污染问题也日益加剧.目前的研究主要集中于单一城市或长三角、珠三角和京津冀等中国三大经济圈的道路交通节能减排,缺乏对东南沿海经济圈的相关研究.粤闽浙三省位于我国东南沿海经济发展的核心地带,在其经济发展的同时不可避免地带来了能耗及排放问题.基于长期能源替代规划系统模型,构建了2015~2035年粤闽浙沿海重点城市道路交通基准情景(BAU)以及现有政策情景(EPS)和改进政策情景(MPS),其中,EPS和MPS均设置了车辆结构优化情景(VSO)、提高燃油经济性情景(IFE)和年均行驶里程减少情景(RDM).基于情景模拟,评估在各项政策和措施的作用下,粤闽浙沿海重点城市的道路交通节能减排潜力.结果表明,在一级情景中,改进政策情景对于节约能耗、碳减排以及污染物减排效果最好,相比于基准情景2035年其节能力度达75%,且对CO2、CO、NOx、PM2.5和SO2的排放削减力度分别达68%、59%、66%、70%和64%;在二级情景中,提升燃油经济性的改进情景对于节约能耗(削减30%)效果显著;车辆结构调整的改进情景(削减36%、30%、36%、26%和40%)和年均行驶里程减少的改进情景(削减37%、37%、36%、37%和36%)对于CO2、CO、NOx、PM2.5和SO2减排效果显著.  相似文献   

15.
王松伟  汤克勤  张皓然  刘弯弯  白露  李楠 《环境科学》2023,44(10):5443-5455
碳排放达峰和空气质量达标是当前大气环境研究的热点问题.利用排放因子法建立2010~2019年江苏省城市级温室气体排放清单,进一步结合温室气体-大气污染物协同关系分析和WRF-Chem空气质量模型模拟,量化不同碳减排情景下空气质量改善的协同增益.结果表明,2010~2019年江苏省CO2年均排放量为701.74~897.47 Mt,其中苏州、徐州和南京排放量最高(91.19~182.12 Mt ·a-1),扬州、宿迁和连云港排放量最低(13.19~32.54 Mt ·a-1),大部分城市CO2排放呈持续上升趋势.能源活动为CO2排放的主要来源,贡献率占比近90%,工业生产过程贡献率约10%.依据减排侧重点的不同设计3类CO2减排情景,分别为全部门协同减排、优先能源减排和优先工业减排,每类减排情景包含不同的CO2减排力度(10%、20%和40%).情景模拟结果指出,以2017为基准年,全部门协同、优先能源和优先工业减排中PM2.5年均浓度下降幅度分别为6.7~21.1、3.1~12.0和3.4~14.3 μg ·m-3.全部门协同减排对PM2.5污染改善最为显著,在全部门减排情景为40%下,除徐州和宿迁外其它城市PM2.5年均浓度值均能达到国家Ⅱ级标准(35 μg ·m-3).PM10、SO2、NO2和CO的变化响应与PM2.5类似,但O3污染在优先能源和优先工业情景下呈现出不同程度的上升趋势.  相似文献   

16.
李睿  魏巍  王兴锋  王晓琦  程水源 《环境科学》2023,44(10):5400-5409
近年来京津冀区域夏季臭氧(O3)体积分数仍居高位,轻中度污染频繁发生,相关反应机制研究亟需开展.利用WRF-Chem模式对该区域2018年夏季代表月O3浓度进行模拟,并基于Brute-Force方法探究了区域层面前体物减排的O3变化.O3在不同排放情景的变化表明,该区域O3反应机制以VOCs控制区与非敏感区为主,VOCs控制区主要聚集京津冀中部,呈南北带状分布,面积占比15.60%~26.59%.区域各市城区的O3浓度对前体物排放的相对响应强度(RRI)具有很大的空间差异性,对于VOCs,RRI_VOC在0.03~0.16范围内;而对于NOx,RRI_NOx在-0.40~0.03范围内.纬度越高的城区,RRI值越剧烈,表明了越为显著的区域输送影响.前体物排放强度高的城区,RRI_NOx值越低,暗示RRI_NOx对当地NO2浓度的负向依赖;但RRI_VOC与NO2水平无明显关联,更依赖于对前体物相对丰度(VOCs :NOx).RRI_VOC与RRI_NOx比值在多数城市表现为负值,VOCs协同减排以抑制O3浓度恶化十分必要;该比值的绝对值在工业化和城市化高的城市远低于普通中小城市,意味着这些城市VOCs协同减排的要求将更高.然而,即使在前体物50%减排下,区域各城市O3浓度改善仍然有限,毗邻省份的区域外联合治理也依然重要.  相似文献   

17.
吴也正  张鑫  顾钧  缪青  魏恒  熊宇  杨倩  吴斌  沈文渊  马强 《环境科学》2024,45(3):1392-1401
以2017~2021年的5~6月苏州市城区站点的大气污染物浓度为研究对象,分析了臭氧(O3)、氮氧化物(NOx)、总氧化剂(Ox)、一氧化碳(CO)和挥发性有机物(VOCs)等污染物的变化特征,利用基于观测的模型(OBM)研究了O3污染成因及其年际变化,解析了环境空气VOCs的主要来源及其变化趋势.结果表明:①近年来苏州Ox平均体积分数以及NOx和CO平均浓度整体呈下降趋势,但VOCs的体积分数整体呈上升趋势;O3污染天光化学反应前体物浓度水平仍较高,且显著高于优良天.②近年来苏州O3生成处于VOCs控制区;苏州市VOCs和NOx长期减排比例应不低于5∶1,在VOCs控制方面应注重对芳香烃和烯烃的减排.③源解析结果显示,工业排放、汽油车尾气和柴油机尾气是苏州市VOCs的主要排放源;近年来工业排放源和溶剂使用源有所下降,但汽油车尾气源和油气挥发源贡献率上升明显,且上述两类污染源排放VOCs的O3生成潜势较高.④综合分析各排放源对O3生成潜势的贡献发现,溶剂使用源和汽油车尾气源的VOCs排放是影响苏州市O3生成的关键因素.  相似文献   

18.
以天津市津南区为例,采用自下而上的方式基于工序工艺建立了2017年精细化工业源排放清单,并深入探讨其对于工业源管理治理的实践应用意义.结果表明,津南区全年排放SO2 1778.50 t、NOx 3972.40 t、PM 2331.35 t、VOCs 933.49 t.津南区涉气工业企业入园率为68.55%,园区内企业SO2、NOx、PM、VOCs排放总量分别占到全区的92.77%、80.70%、89.34%、72.06%,可极大便利推行网格化等管理模式,提高工业源管理治理效率.本研究基于精细化源排放清单中污染物工序工艺及末端治理特征,参考国家、地方环境保护相关标准,设计NOx、PM、VOCs减排情景,保守计算NOx、PM、VOCs可在现有基础上分别减排约10.32%、19.88%、18.74%.本研究探索了基于工序工艺建立精细化源排放清单的意义、可行性以及存在的问题,可以为大、中尺度排放清单的建立提供有益的参考.  相似文献   

19.
京津冀地区钢铁行业污染物排放清单及对PM2.5影响   总被引:1,自引:0,他引:1  
以京津冀地区为研究区域,采取自下而上的方法,建立京津冀地区钢铁行业细化至焦化、烧结和球团、炼铁、炼钢、轧钢等工序的多污染物排放清单.清单估算结果显示,2015年京津冀地区钢铁行业SO2、NOx、TSP、PM10、PM2.5、CO、VOC的排放量分别为38.82、27.23、79.19、53.15、38.68、823.38、26.53万t,其中烧结和球团工序是最主要的污染物排放工序(17.0%~72.0%),其次为炼铁工序(4.6%~42.4%)和轧钢工序(3.5%~35.7%).采用具有污染物来源示踪功能的双层嵌套气象-空气质量模型系统(WRF-CAMx)耦合模型模拟京津冀地区钢铁行业污染物排放对区域大气PM2.5浓度的影响.模拟结果显示:钢铁行业在春夏秋冬这4个季节对京津冀地区PM2.5浓度贡献率分别达到14.0%、15.9%、12.3%、8.7%.各地市中,钢铁行业对唐山市PM2.5影响最大,年均PM2.5浓度贡献率高达41.2%,其次为秦皇岛市、石家庄市、邯郸市,年均PM2.5浓度贡献率分别达到19.3%、15.3%、15.1%.  相似文献   

20.
河北省各城市均已开展利用机动车保有量等宏观统计数据的城市移动源排放清单编制工作,但尚缺乏对跨省及全省各城市间国省道高时空分辨率的移动源排放清单研究.本研究利用2017年河北省国道、省道日均交通流量监测数据,计算了2017年河北省国道和省道机动车大气污染物排放量.结果表明:2017年河北省国道和省道机动车CO、HC、NOx、PM2.5和PM10排放量,与利用宏观统计数据计算得到的全省机动车排放总量相比,分别占27.8%、15.7%、55.6%、58.3%和58.5%.重型货车是国道和省道机动车CO、NOx、PM2.5和PM10排放的主要来源.河北省南部国省道的机动车排放量以南部各城市为中心呈网状辐射,东北部沿海地区的排放量主要在沧州-天津-唐山-秦皇岛-承德沿线分布,西北部则主要在保定-张家口-内蒙沿线分布.月均排放量分布情况为1月最高,9月最低;周日均分布情况为周一—周三逐日增加,周四开始回落,周日降至最低;每日小时平均分布呈现明显的双高峰现象,两次高峰分别出现在11:00和18:00左右;最低值出现在凌晨4:00.河北省内,各市国省道机动车污染物排放分担率前3位的依次为保定、沧州和张家口.跨省交通车辆排放的CO、HC、NOx、PM2.5、PM10分别占河北省国省道机动车总排放量的48.1%、48.7%、42.9%、41.3%和41.3%,其中天津市出入河北省的车辆排放分担率最高,其次是北京.京津冀应在区域层面建立机动车污染联合防治协调机制,从调整区域货运交通运输结构、推动柴油车污染控制措施升级等方面改善区域环境空气质量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号