首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
新型环境测试舱研制、性能评价及释放模拟   总被引:1,自引:0,他引:1  
研制了一种新型环境测试舱,此舱系统可用于研究室内材料中挥发性有机物(VOCs)释放特征和释放机理。详细介绍舱的设计,讨论舱系统的优缺点,并对舱的性能进行评价测试。结果表明,温度和相对湿度的准确性分别为≤0.5℃和≤ 3.1%,空气混合水平达到92.9%,回收率达到85.2%。根据回收率实验结果,用经验模型和VB模型模拟对二氯苯(p-DCB)释放,模拟结果与实测值吻合很好。  相似文献   

2.
为预测评估过硫酸盐缓释材料的释放性能,对释放过程模型的构建以及模型的验证进行了研究。借助微积分思想,从材料体的概化分割、初始条件设定、每个小单元的状态标定、各个小单元中过硫酸钾的迁移变化量以及材料最外层释放过硫酸盐的量5个方面构建过硫酸盐缓释材料释放模型,利用Excel-VBA编程实现其释放过程模拟。采用欧盟标准NEN7375测试过硫酸盐缓释材料释放性能并获得模型参数。通过输入相关模型参数得到过硫酸盐动态迁移过程及其释放特征曲线,并利用实测数据与模拟数据进行拟合校验。结果表明,模型模拟值与实测值拟合较好,平均误差为1.88%,表明该模型设计合理,能够准确模拟过硫酸盐缓释材料释放过程,可作为缓释材料优化设计工具。  相似文献   

3.
以聚丙烯(PP)非织造布为基材,制备苯乙烯(ST)和二乙烯苯(DVB)接枝的无纺布材料PP-ST-DVB,再通过交联反应使得非织造布表面的接枝层形成微孔结构,制备对VOCs具有吸附性能的非织造布(HCN)材料。采用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、静态氮吸附仪(BET)对非织造布表面形貌进行了表征。重点研究了HCN的结构对挥发性有机物(VOCs)(苯乙烯、丙酮和正己烷)吸附性能影响规律;探讨了无纺布表面基团与VOCs的化学作用力对吸附性能的影响。结果表明,当ST和DVB接枝率135%左右时,HCN的比表面积可达到351.8 m~2·g~(-1),对VOCs吸附性能显著提高,苯乙烯的最大吸附量可达到353.6 mg·g~(-1),材料对3种气体的吸附能力为苯乙烯正己烷丙酮。  相似文献   

4.
矿化效率是VOCs光催化净化技术应用的关键指标。为提高光催化剂对VOCs的矿化性能,以邻苯二胺和间苯二胺为模板剂在P25表面诱导生长微孔TiO_2形成同质多孔吸附层,分别得到多孔-晶体TiO_2复合材料P25-A和P25-B,利用透射电镜(TEM)、氯气等温吸附脱附和表面光电压谱(SPV)等手段表征其物理结构及光生载流子分离行为,以甲苯为VOCs代表研究材料的吸附和光催化氧化特性。结果发现,同质吸附层显著提升了催化剂的吸附性能,P25-A和P25-B的甲苯平衡吸附量分别是P25的1.9和2.4倍。其中邻苯二胺诱导生成的同质吸附层同时促进了光生载流子的分离,表现出明显的吸附与光催化氧化的协同效应,对甲苯的矿化效率相比P25提高了270%。  相似文献   

5.
以浸渍法制备的分子筛负载铜锰铈(Cu-Mn-Ce/ZSM)为吸附剂,以甲苯、乙酸乙酯和丙酮作为挥发性有机物(VOCs)的典型代表,考察了单组分和混合组分VOCs在吸附剂固定床上的吸附行为。研究表明,Cu-Mn-Ce/ZSM吸附单组分VOCs时,甲苯的吸附穿透时间与饱和吸附量分别为110 min和32.47 mg/g,乙酸乙酯为150 min和52.29 mg/g,丙酮为210 min和86.40 mg/g,可见Cu-Mn-Ce/ZSM对单组分VOCs的吸附能力大小为:丙酮乙酸乙酯甲苯。Cu-Mn-Ce/ZSM吸附混合组分VOCs时,在甲苯与乙酸乙酯的穿透曲线上出现了明显的"驼峰",吸附穿透过程中存在共吸附和竞争吸附行为,甲苯的吸附穿透时间与饱和吸附量降至50 min、10.42 mg/g,乙酸乙酯为95 min、15.12 mg/g,丙酮为105 min、44.37 mg/g。通过Yoon-Nelson模型对单组分VOCs吸附穿透曲线的拟合,表明吸附模型参数可以准确地预测吸附质在固定床上的穿透行为。速率参数k'值计算表明,不同VOCs在固定床上的吸附速率大小为丙酮乙酸乙酯甲苯。  相似文献   

6.
采用大气挥发性有机物(VOCs)在线监测系统对成都市冬季重污染过程的VOCs进行了连续在线观测,用正交矩阵因子分解(PMF)模型开展了VOCs源解析工作,并对重污染成因进行了分析。结果表明:观测期间成都市总VOCs(TVOCs)体积分数为21.83×10~(-9)~183.59×10~(-9),平均值为54.17×10~(-9),TVOCs中烷烃浓度最高,其次为炔烃、烯烃、芳香烃和卤代烃;成都市主要VOCs污染源为机动车排放源、液化石油气燃烧排放源、工业源、生物质燃烧源和溶剂使用源,贡献率分别为34.15%、21.57%、19.08%、15.19%、10.02%;边界层压缩和静风条件可能是导致VOCs和PM2.5浓度增加的主要原因。  相似文献   

7.
利用化学氧化法合成了苯胺-2,4-二氨基酚的共聚物,并通过静态吸附实验研究了该材料对水中Cr(Ⅵ)的吸附性能.研究表明,该共聚物对废水中Cr(Ⅵ)的去除效果显著,该吸附过程为自发吸热反应,符合Langmuir单层吸附模型;其动力学行为符合准二级动力学方程.溶液pH值对吸附性能影响较大,pH 3~6范围内吸附效果较好.吸...  相似文献   

8.
真菌降解挥发性有机化合物的研究进展   总被引:2,自引:0,他引:2  
挥发性有机化合物(VOCs)是一类重要的大气污染物,生物降解法是近年来兴起的VOCs治理技术,它具有费用低、净化效率高、无二次污染等特点。目前,有关生物降解污染物的研究大部分都以细菌作为优势微生物,而对于真菌的研究起步相对较晚。真菌具有耐干燥、耐弱酸等特性,使得其在处理疏水性VOCs上具有明显优势。分析了真菌的降解特征及优势,总结了已分离到的可降解VOCs的真菌及其善于降解的污染物,重点探讨了影响真菌生物反应器VOCs降解性能的主要因素和相关动力学研究,并对今后真菌降解VOCs的研究方向进行了展望。  相似文献   

9.
利用沈阳市某工业园区大气监测数据,依据等效丙烯浓度(PEC)和臭氧生成潜势(OFP)法识别园区挥发性有机物(VOCs)活性物种,基于主成分分析(PCA)法和正定矩阵因子分析(PMF)模型进行VOCs来源解析.结果表明:芳香烃、烯烃和C5烷烃为园区活性较强的组分;PCA法和PMF模型的VOCs来源解析结果基本一致,园区V...  相似文献   

10.
为探究印染行业生产过程中挥发性有机物(volatile organic compounds, VOCs)的产生特征及现有控制措施对VOCs的去除效果,选取浙江某典型印染企业作为研究对象,调查了该企业主要VOCs污染源(包括定型机、配料间及污水站)的废气产生特征,测定和评价了各废气处理装置对VOCs的去除效果。结果表明,该企业定型机、配料间及污水站产生的有组织废气总流量分别为8.6×10~5、7.4×10~4、2.8×104 m~3·h~(-1),产生的VOCs平均浓度分别为14.7、9.0和14.9 mg·m~(-3),有组织废气源VOCs的年产生总量约为80 t。定型车间、印染车间和污水站附近无组织VOCs的平均浓度分别约为0.66、0.16和0.59 mg·m~(-3)。产生的典型VOCs包括苯甲酸苄酯、五氟丙酸三十八烷酯、乙二醇单丁醚、十六烷、异喹啉等。定型机废气采用"冷却+静电"或"喷淋+静电"工艺处理,其对VOCs的去除率仅为2%~6%。配料间和污水站产生废气采用"碱洗+次氯酸钠洗涤"工艺处理,其对VOCs的去除率为8%~58%。研究结果可为印染行业VOCs污染控制提供参考。  相似文献   

11.
In 1997, Homeswest in western Australia and Murdoch University developed a project to construct low-allergen houses (LAHs) in a newly developed suburb. Before the construction of LAHs, all potential volatile organic compound (VOC) emission materials used in LAHs are required to be measured to ensure that they are low total VOC (TVOC) emission materials. This program was developed based on this purpose. In recent times, the number of complaints about indoor air pollution caused by VOCs has increased. A number of surveys of indoor VOCs have indicated that many indoor materials contribute to indoor air pollution. Although some studies have been conducted on the characteristics of VOC emissions from adhesives, most of them were focused on VOC emissions from floor adhesives. Few measurements of VOC emissions from adhesives used for wood, fabrics, and leather are available. Furthermore, most research on VOC emissions from adhesives has been done in countries with cool climates, where ventilation rates in the indoor environment are lower than those in Mediterranean climates, due to energy conservation. VOCs emitted from adhesives have not been sufficiently researched to prepare an emission inventory to predict indoor air quality and to determine both exposure levels for the Australian population and the most appropriate strategies to reduce exposure. An environmental test chamber with controlled temperature, relative humidity, and airflow rate was used to evaluate emissions of TVOCs from three adhesives used frequently in Australia. The quantity of TVOC emissions was measured by a gas chromatography/flame ionization detector. The primary VOCs emitted from each adhesive were detected by gas chromatography/mass spectrometry. The temporal change of TVOC concentrations emitted from each adhesive was tested. A double-exponential equation was then developed to evaluate the characteristics of TVOC emissions from these three adhesives. With this double-exponential model, the physical processes of TVOC emissions can be explained, and a variety of emission parameters can be calculated. These emission parameters could be used to estimate real indoor TVOC concentrations in Mediterranean climates.  相似文献   

12.
Basing on the material emission data obtained in a test chamber, chemical mass balance (CMB) was used to assess the source apportionment of volatile organic compound (VOC) concentrations in three newly built timber frame houses. CMB has been proven to be able to discriminate the source contributions for two contrasted environmental conditions (with and without ventilation). The shutdown of the ventilation system caused an increase in the VOC concentrations due to the increased contribution of indoor surface materials like the door material and furniture explaining together over 65% of total VOCs. While the increase in formaldehyde concentration is mainly due to furniture (contribution of 70%), the increase in α-pinene concentration is almost exclusively attributable to the emission of door material (up to 84%). The apportionment of VOC source contributions appears as highly dependent on the position of source materials in the building (surface materials or internal materials) and the ventilation conditions explaining that the concentrations of compounds after the shutdown of ventilation system do not increase in equivalent proportion. Knowledge of indoor sources and its contributions in real conditions may help in the selection of materials and in the improvement of construction operations to reduce the indoor air pollution.  相似文献   

13.
Building envelopes are usually comprised of several different layers of building materials, which may alternatively act as VOC sources or sinks depending on their emission and sorption potentials and the indoor environmental conditions as well. In this research, a whole room IAQ model consisting of multi-phase emission/sorption model for wall materials and room volume mass balance model catering for practical ventilation schemes was developed. The interactions of VOC and building materials composing different building components can be modeled based on fundamental mass transfer theories. The effects of various construction materials and ventilation strategies on the emission characteristics were investigated. Results show that measures like pre-occupancy flush-out, lead-time ventilation, etc. have substantial impacts on indoor VOC concentration and the model can successfully handle different building scenarios. Although more rigorous validation, in particular more experimental verification, is needed, the proposed model has proven to be valuable in handling different building scenarios. It is useful in analyzing the levels of contaminant buildup that would occur during no ventilation period for intermittent ventilation situations and in determining the amount of outdoor air and the lead-time period required to flush out the contaminants prior to occupancy. It is likely to be a simple routine tool for building owners, designers and operators to attain acceptable indoor VOC concentration level.  相似文献   

14.
To analyse and generate air pollution control strategies and policies, e.g. efficient abatement strategies or action plans that lead to a fulfilment of air quality aims, atmospheric dispersion models (CTMs) have to be used. These models include a chemical model, where the numerous volatile organic compounds (VOCs) species are lumped together in classes. On the other hand, emission inventories usually report only total non-methane VOC (NMVOC), but not a subdivision into these classes. Thus, VOC species profiles are needed that resolve total NMVOC emission data. The objective of this publication is to present the results of a compilation of VOC species profiles that dissolve total VOC into single-species profiles for all relevant anthropogenic emission source categories and the European situation. As in atmospheric dispersion models usually modules for generating biogenic emissions are directly included, only anthropogenic emissions are addressed. VOC species profiles for 87 emission source categories have been developed. The underlying data base can be used to generate the data for all chemical mechanisms. The species profiles have been generated using recent measurements and studies on VOC species resolution and thus represent the current state of knowledge in this area. The results can be used to create input data for atmospheric dispersion models in Europe.The profiles, especially those for solvent use, still show large uncertainties. There is still an enormous need for further measurements to achieve an improved species resolution. In addition, the solvent use directive and the DECOPAINT directive of the European Commission will result in a change of the composition of paints; more water-based and high-solid paints will be used; thus the species resolution will change drastically in the next years. Of course, the species resolution for combustion and production processes also requires further improvement.  相似文献   

15.
Based on the most recently published mass transfer model of volatile organic compound (VOC) emissions from dry building materials, it is found that the dimensionless emission rate and total emission quantity are functions of just four dimensionless parameters, the ratio of mass transfer Biot number to partition coefficient (Bim/K), the mass transfer Fourier number (Fom), the dimensionless air exchange rate (2/Dm) and the ratio of building material volume to chamber or room volume (/V). Through numerical analysis and data fitting, a group of dimensionless correlations for estimating the emission rate from dry building materials is obtained. The predictions of the correlations are validated against the predictions made by the mass transfer model. Using the correlations, the VOC emission rate from dry building materials can be conveniently calculated without having to solve the complicated mass transfer equations. Thus it is very simple to estimate VOC emissions for a given condition. The predictions of the correlations agree well with experimental data in the literature except in the initial few hours. Furthermore, based on the correlations, a relationship between the emission rates of a material in two different situations is deduced. With this relationship, the results for a given building material in a test chamber can be scaled to those under real conditions, if the dimensionless parameters are within the appropriate region for the correlations. The relationship also explicitly explains the impacts of air velocity, load ratio, and air exchange rate on the VOC emission rate, which determines the feasibility of assuming that the VOC emission rates in real conditions are the same as those in the test chambers.  相似文献   

16.
While emission rates of volatile organic compounds (VOCs) have been obtained for building materials, furnishings and processes in chambers, field measurements are more difficult. Procedures to estimate emission rates using transient analysis of VOC concentrations are described and applied in a two-story classroom/office building. The analysis employs semi-real-time VOC concentrations determined with a portable GC/FID and simultaneous air change rate measurements using tracer gas decay. The results of the analysis yield consistent values of emission rates for building materials ranging from 0.20 to 0.40 mg m−2 h−1 when normalized by floor area. Occupancy-related emissions were more difficult to estimate and covered a wider range from roughly 0.1 to 1.5 mg m−2 h−1. The test data were also analyzed in an attempt to determine sink parameters, but these efforts were not particularly successful. Furthermore, in these tests, the inclusion of sink effects did not significantly impact the estimated emission rates. While this paper offers a transient analysis approach that may lead to improved field estimates of VOC emission rates, it is not presented as a definitive methodology. Nevertheless, transient analysis has potential for use in other buildings, but simultaneous air change rate measurements are critical in its application in estimating VOC emission rates in the field.  相似文献   

17.
Volatile organic compounds (VOCs) emitted from surface coatings have caused growing public concern for air quality. Even the low-emitted VOC impact from water-based paints on indoor air quality in urban areas has caused concern. This paper presents experimental data using a mathematical model to simulate dynamic VOC emissions from water-based paints that is based on mass transfer and molecular diffusion theories. A series of field-analogous experiments were carried out to continuously measure the VOCs emitted from two typical water-based paints using a gas chromatography-flame-ionization detector monitor in an artificial wind tunnel system. In the study cases, the mass flux of VOCs emitted from the water-based paints was up to 50 microg/m2sec. It was found that the time needed to completely emit VOCs from water-based paints is just hundreds of seconds. However, the order of magnitude of the VOC emission rate from water-based paints is not lower than that from some dry building materials and solvent-based paints. The experimental data were used to produce a useful semiempirical correlation to estimate the VOC emission rates for water-based paints. This correlation is valid under appropriate conditions as suggested by this work with a statistical deviation of +/- 7.6%. With this correlation, it seems feasible to predict the dynamic emission rates for VOCs during a painting process. This correlation is applicable for assessing the hazardous air pollutant impact on indoor air quality or for environmental risk assessment. Associated with the dynamic VOC emission characterization, the air-exchange rate effect on the VOC emission rates is also discussed.  相似文献   

18.
ABSTRACT

A maximum information entropy method of calculating probabilistic estimates of volatile organic compound (VOC) emissions by the wood furniture and fixture coating industry is presented. The maximum entropy approach is used to produce minimally biased probability distributions for number of firms, coating use, and coating emission factors from existing summary statistics. These distributions are combined to estimate VOC emissions. The maximum entropy emissions estimate provides information to support probabilistic modeling of regional air quality, probabilistic assessment of emission reduction strategies, and risk assessments. Accurate estimation of emission distributions produces more informed regulatory decisionmaking, risk comparisons, and regulatory and scientific priority setting.  相似文献   

19.
The sorption of volatile organic compounds (VOCs) by different building materials can significantly affect VOC concentrations in indoor environments. In this paper, a new model has been developed for simulating VOC sorption and desorption rates of homogeneous building materials with constant diffusion coefficients and material–air partition coefficients. The model analytically solves the VOC sorption rate at the material–air interface. It can be used as a “wall function” in combination with more complex gas-phase models that account for non-uniform mixing to predict sorption process. It can also be used in conjunction with broader indoor air quality studies to simulate VOC exposure in buildings.  相似文献   

20.
ABSTRACT

The concentrations of contaminants in the supply air of mechanically ventilated buildings may be altered by pollutant emissions from and interactions with duct materials. We measured the emission rate of volatile organic compounds (VOCs) and aldehydes from materials typically found in ventilation ducts. The emission rate of VOCs per exposed surface area of materials was found to be low for some duct liners, but high for duct sealing caulk and a neo-prene gasket. For a typical duct, the contribution to VOC concentrations is predicted to be only a few percent of common indoor levels. We exposed selected materials to ~100-ppb ozone and measured VOC emissions. Exposure to ozone increased the emission rates of aldehydes from a duct liner, duct sealing caulk, and neoprene gasket. The emission of aldehydes from these materials could increase indoor air concentrations by amounts that are as much as 20% of odor thresholds. We also measured the rate of ozone uptake on duct liners and galvanized sheet metal to predict how much ozone might be removed by a typical duct in ventilation systems. For exposure to a constant ozone mol fraction of 37 ppb, a lined duct would initially remove ~9% of the ozone, but over a period of 10 days the ozone removal efficiency would diminish to less than 4%. In an unlined duct, in which only galvanized sheet metal is exposed to the air-stream, the removal efficiency would be much lower, ~0.02%. Therefore, ducts in ventilation systems are unlikely to be a major sink for ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号