首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
汞是一种高毒性且具有持久性的重金属污染物,汞污染的治理与修复在近几十年一直是国内外研究热点.了解微生物对汞赋存形态的转化作用,对汞污染的治理与修复具有重要意义.总结汞的不同赋存形态、毒性及对应的常用分析方法,其中甲基汞(methyl mercury,MeHg)是毒性最强的汞形态之一.环境中汞的化学形态能发生转化,尤其以微生物驱动的汞的甲基化、MeHg的去甲基化和汞的氧化还原最为常见.依据汞转化类型将汞转化相关微生物分为汞甲基化、MeHg去甲基化、汞还原、汞氧化等类群,将对应的汞转化作用机制分为基于hgcAB基因的汞甲基化、基于mer操纵子基因的MeHg去甲基化和Hg2+还原、胞内过氧化氢酶介导的Hg0氧化.微生物汞转化过程不仅受到pH和温度的显著影响,而且还受到汞的赋存形态和游离汞的浓度、微生物种/群结构与功能、矿物种类、中间体和次生产物及其交互作用的影响,基于此,提出正确客观表征汞的微生物转化过程需要综合分析微生物组和矿物组的变化规律及其交互作用的综合效应.针对酸性矿山废水(AMD)极端环境微生物汞转化研究的不足,未来的工作将聚焦结合多组学手段、同步辐射谱学和密度泛函理论(DFT)计算等分析技术研究汞赋存形态的微生物转化过程,分析和阐明汞转化中间体的键合作用方式和转化机制,从而为AMD汞污染的预防、治理和修复提供依据.(图2表2参107)  相似文献   

2.
为缓解新疆棉花连作障碍,充分挖掘棉花根系生物学潜力,以新疆棉花根系为研究对象,采用模块根分级的方法探究不同根序根系的形态和生理特征以及它们对添加生物炭(BC)的响应.结果表明:根序对两个时期的生理指标、形态指标和根系生物量有显著影响.随着根序级的增加,吐絮期根系的可溶性蛋白含量、可溶性糖含量、全非结构性碳水化合物含量、第二和第三模块根的平均直径和根系生物量不断增加,两个时期比根长、比表面积和吐絮期组织密度不断减小.与对照相比,添加BC增加蕾期第一、第二模块根的可溶性蛋白含量分别为30.7%和21.8%,增加第一模块根的全非结构性碳水化合物含量79.8%、可溶性糖含量151%、比根长182%和比表面积193%,增加第二模块根的组织密度124%、吐絮期第一模块根的比根长6.3%和第一、第二模块根的组织密度分别为51.2%和23.8%.综上所述,棉花不同根序根系在生理和形态上存在异质性;第一模块根对BC添加最敏感,且BC使其在形态上更细更长,生理上活性更强,这有利于棉花对养分的吸收.(图4表3参57)  相似文献   

3.
四环素类抗生素(TCs)是目前我国应用广泛、用量最大的一类抗生素,畜禽粪便和土壤中存在TCs残留,影响蔬菜作物的生长发育. TCs因水溶性较高更容易被植物转运和积累,植物对TCs耐受性机理研究仍不足.为更全面探究土壤TCs对蔬菜的毒性作用,研究不同浓度四环素(TC)和土霉素(OTC)分别对生菜的抗生素残留、生长特征及抗氧化酶系统的影响.结果显示,在0(对照)、2、10、50、250 mg/kg 5个施用水平下,生菜叶片抗生素含量逐渐增加,且土霉素含量始终大于四环素含量.与对照相比,抗生素浓度在50 mg/kg以上时对生菜生长具有显著抑制作用,其中,株高、根长、地上部和地下部鲜重与叶片TC残留量具显著负相关.生菜叶片的脯氨酸含量随浓度增加呈先增加后降低的趋势,在10 mg/kg时达到最大.并且低浓度(2 mg/kg)促进抗氧化酶基因SOD、POD21和CAT的表达,高浓度抗生素(50、250 mg/kg)对其产生抑制作用,10 mg/kg的抗生素处理对SOD、POD21和CAT基因表达的影响在抗生素种类上存在差异.本研究表明抗生素浓度超过50 mg/kg对生菜生长产生抑制作用,脯氨酸和抗氧化酶SOD、POD、CAT的转录水平及其酶活性能快速响应抗生素胁迫,可作为生菜对抗生素抗性的辅助评价指标.(图8表3参19)  相似文献   

4.
Anaerobic ammonium oxidation (Anammox) is a biological process that has the advantages of saving energy and being highly efficient. However, there are some problems with it such as slow proliferation and activity inhibition of Anammox bacteria in practical applications. First, we introduce the inhibitory effects of Anammox by substrate and non-substrate materials, including nitrite, organic and inorganic substances, and others, and elaborated on activity recovery approaches such as controlling the operation parameters and adding sludge. The effects of the addition of inorganic carbon, Anammox intermediates, Fe, and conductive materials on Anammox are then reviewed in detail, and three Anammox metabolic pathways are summarized. Finally, we discuss the problems (including NOB inhibition and low temperature) and countermeasures when Anammox is applied for wastewater treatment as a mainstream technology, and we summarized the measures of NOB washout by free ammonia and free nitrite solutions and methods to cope with low temperatures, including selecting suitable reactor types and culture methods. Meanwhile, we analyzed the interactions among the intermediates and the synergy between Anammox and denitrification and suggest the potential of applying Anammox for flue gas denitrification and anaerobic aromatic hydrocarbon biodegradation. Further studies are suggested regarding multifactor composite inhibition, Anammox physiological characteristics, and intermediate metabolic mechanisms as well as regarding methods for avoiding adverse factors in mainstream wastewater treatment. © 2018 Science Press. All rights reserved.  相似文献   

5.
Sophorolipids (SLs), secondary metabolites of non-pathogenic yeasts, are glycolipid biosurfactants with wide applications. Research on the pharmaceutical activities of sophorolipids is important. In recent years, an increasing number of researchers have been interested in the antimicrobial activity of sophorolipids. In this study, the effects of sophorolipids on bacteria, fungi, and their biofilms were reviewed. Sophorolipids cause greater damage and better inhibition of gram-positive bacteria, and lactonic sophorolipids show stronger effects than acid sophorolipids. In addition, sophorolipids can disperse and destroy resistant biofilms, which are difficult to handle. Second, the synergistic effects of sophorolipids in combination with commonly used antibiotics and antimicrobial materials were reviewed. When sophorolipids and antibiotics are used together, the effective dosage of the antibiotics is significantly reduced. Sophorolipids can enhance the antimicrobial effects when used to synthesize or coat antimicrobial materials. Finally, we investigated the problems and development of the antimicrobial activities of sophorolipids, further expansion of the antimicrobial spectrum of sophorolipids, in-depth analysis of mechanisms of antimicrobial and synergistic effects, development and modification of new sophorolipids, and exploration of the water-solubility of sophorolipids. © 2022 Authors. All rights reserved.  相似文献   

6.
In order to investigate the effects of clonal integration on the adaptation of clonal plants to the environmental stress of homogeneous herbivory, we conducted a greenhouse experiment to investigate the ecophysiological response characteristics of Phalaris arundinacea collected from the riparian zone of the Poyang Lake wetland and Le'an River in Jiangxi Province and the effect of clonal integration on this dominant plant under two-months of simulated cyclical homogenous herbivory. Simulated herbivory strength was set at four different levels: no leaf removal (control) and 25%, 50%, and 75% leaf removal. We implemented two methods of clonal integration including no integration, in which the rhizome connection was severed, and integration, in which the rhizome connection was intact. We found that simulated herbivory significantly decreased the number of leaves, total shoot length, number of ramets, and biomass of P. arundinacea (P < 5%), regardless of whether the rhizomes were intact or severed. Ramets with severed rhizome connections (RRC) generally had higher growth indices than those with intact rhizome connections (RIC). Severing rhizomes did not significantly affect the chlorophyll content of P. arundinacea, while RRC under simulated herbivory intensities of 25% and 50% leaf removal had higher chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (Chlt) contents than RIC did, and simulated herbivory increased the chlorophyll contents of all ramets. RRC net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) were all higher in RRC than they were in RIC under simulated herbivory intensities of 50% and 75% leaf removal; however, the opposite relationship was observed under a simulated herbivory intensity of 25% leaf removal. Further, simulated herbivory limited the photosynthetic index of P. arundinacea. These effects resulted in an inadequate accumulation of nutrients in the plant. Phalaris arundinacea can adapt to simulated herbivory treatments in terms of growth, but clonal integration cannot improve the growth of P. arundinacea under a homogeneous herbivory treatment. © 2018 Science Press. All rights reserved.  相似文献   

7.
In order to solve the problem of poor treatment of phosphorus in membrane bioreactor (MBR) with long sludge retention time (SRT), a ferric salt was added to enhance phosphorus removal; FeCl36H2O (Fe/P = 2.0) was added to the reactor. The removal efficiency of nitrogen, organic matters, and phosphorus in the MBR was investigated systematically. Moreover, this study focused on the membrane performance, the change of active sludge flora, and the effect of adding a ferric salt on membrane fouling before and after the addition. It was seen that adding the ferric salt could not affect the removal of COD and NH4 +-N and the removal rate of COD and NH4 +-N reached over 90%. However, the average removal rate of phosphorus was 52%, while the removal rate increased by nearly 40% after adding the ferric salt. The effects of adding ferric salts on the dominant bacteria and biological phosphorus removal of activated sludge were further studied. The results showed that the addition of ferric salt (Fe/P = 2.0) decreased the diversity of active sludge flora and relative abundance of some phosphorusaccumulating organisms and had a negative effect on biological phosphorus removal. The analysis of transmembrane pressure difference (TMP) recording revealed that the concentration of iron salts did not exacerbate membrane fouling. The results showed that the concentration of iron salts entering the membrane bioreactor would reduce the relative abundance and phosphorus removal efficiency of the activated sludge in the system to a certain extent, but it had no obvious effect on membrane fouling. It allowed the effluent to attain acceptable standards, especially with respect to phosphorus removal efficiency. © 2018 Science Press. All rights reserved.  相似文献   

8.
介绍第二次青藏高原综合科学考察研究任务三生态系统与生态安全专题三“农田生态系统与粮食安全”科学考察背景、总体思路、研究内容、研究目标和取得的阶段性进展.该专题针对青藏高原地区农业生产中逐渐出现的局部农田生态系统结构失稳、功能失衡、地力衰退、作物品质下降、农残渐增等问题,在区域尺度上,从耕地肥力和土壤生物、农田植被、农业生产经营管理、作物产量品质和利用、农业气象条件等方面开展科学考察研究,在青藏高原农田生态系统相关生态环境参数的时空特征、分布规律与作物开发利用等考察研究方面取得阶段性重要进展,可为青藏高原农业生态系统可持续经营管理和粮食安全提供数据及科技支撑.(图1参90)  相似文献   

9.
Hull-less barley is a special food crop rich in various nutrients in Qinghai-Tibet Plateau. Six-pearling is often used to produce commercial hull-less barley rice in order to improve its rough taste and inferior cooking quality. This study evaluated the differences in the nutritional, cooking, sensory, and storage qualities of hull-less barley rice with different pearling times to obtain suitable processing conditions for the production of high-quality hull-less barley rice. With increasing pearling time, the contents of vitamin B6, vitamin E, dietary fiber, iron, zinc, phenols, and flavonoids significantly decreased to a large extent, protein and vitamin B3 decreased slightly, the contents of total starch and β-glucan increased significantly, and γ-aminobutyric acid (GABA) initially increased and then decreased. The peak, trough, and final viscosity of whole grain barley were 1 860.50 cP, 914.50 cP, and 2 150.00 cP, respectively, and increased after six-pearling to 4 219.00 cP, 2 628.00 cP, and 5 074.00 cP, respectively. At the same time, the water absorption and volume expansion of the pearled hull-less barley increased significantly. The hardness of pearled hull-less barley reduced from 4 708.50 g to 2 282.00 g, its adhesiveness increased from 0.00 to -7.33, and its taste and sensory quality exhibited better. The activities of α-amylase, polyphenol oxidase, lipase, and catalase in pearled hull-less barley slightly decreased. Hull-less bran flour is rich in a variety of nutritional components and could be a potential resource with great developmental value. In general, hull-less barley rice obtained from three-pearling has high nutritional value, high cooking quality, low enzyme activity, and low energy consumption; therefore, it can be used to produce high-quality barley rice. This study provides important information for high-quality pearled hull-less barley and further utilization of barley bran flour. © 2022 Science Press. All rights reserved.  相似文献   

10.
The greenhouse effect has become increasingly serious globally. Nitrous oxide (N2O) is both the major ozone depleting substance and a potent greenhouse gas having a global warming potential 298 times that of CO2, and the N2O concentration is still increasing at an annual rate of about 0.8 × 10-9. Nitrous oxide reductase (N2OR) can reduce N2O to N2, and until recently, the nosZ gene was the only gene known to be able to encode N2OR. Besides the well-known nosZI, a new lineage of the N2O-reductase (nosZ clade II), which is abundant and widespread in soils, has been identified. In this paper, the main characters of nosZII-containing microbial communities and the related working mechanisms are summarized. In addition to the main differences between nosZI and nosZII, the important environmental factors that regulate the composition, abundance, and expression of nosZII-containing communities are also discussed in this paper. Studies have shown that nosZII communities are distributed among a diverse range of bacterial and archaeal phyla, such as Epsilon-proteobacteria, Bacteroidetes, and Aquificae. Interestingly, most of the nosZII microbes lack a nitrite reductase encoding gene (nirS or nirK) and are therefore unable to denitrify, indicating the importance of these communities as N2O sinks. Soil properties such as texture, pH, C/ N ratio, temperature, and lake physical gradient could regulate nosZII microbe abundance and diversity, and the pH and C/ N ratio may be the most important influencing factors. Studies on the ecological function of nosZII microbes have advanced considerably with the development of molecular biology technology. However, further studies on the community structure of nosZII microbes, the influencing factors of nosZII microbe abundance and diversity, and characteristics of nosZII strains with strong N2O reducing ability are needed. We hope to provide a theoretical basis that can be used to facilitate N2O reduction and relieve the greenhouse gas problem. © 2018 Science Press. All rights reserved.  相似文献   

11.
A pot experiment was conducted to study the allelopathic effects of initial decomposing leaf litter of Cinnamomum camphora on growth and physiology of Impatiens balsamina. Three leaf litter treatments included 20, 40 and 80 g of C. camphora leaf litter mixed with 8 kg of soil, namely T1, T2, and T3, respectively. In order to test the effect of leaf litter addition on the permeability and ventilation of soil simultaneously, a parallel trial with steamed leaf litter was conducted with the three treatments of the leaf litter. The leaf litter was steamed for 2 d to remove the secondary metabolites as much as possible, dried, and then mixed with 8 kg of soil, namely Z1, Z2, and Z3, respectively. No leaf litter was added in control (CK). The growth parameters of I. balsamina were determined at the 20 d, 60 d, 100 d and 120 d after sowing and the main physiology indicators were determined at the 60 d. The results indicated that: (1) The ground surface diameter and height of I. balsamina were inhibited significantly at 60 d (P < 0.05). Photosynthetic pigments and gas exchange parameters of I. balsamina were inhibited significantly at 60 d, and the inhibition effect was stronger with increased amount of leaf litter addition. The chlorophyll content, Pn and Ls decreased significantly with increased amount of leaf litter (P < 0.05). The activity of superoxide dismutase (SOD) and peroxidase (POD) in leaves of I. balsamina decreased with the increase of leaf litter addition. The content of MDA in treatments T1, T2 and T3 were all higher than that in CK, which indicated that I. balsamina suffered oxidative damage in a certain degree. The content of free proline (Pro) and soluble sugar (SS) in leaves of I. balsamina decreased significantly with the increase of the leaf litter (P < 0.05), while the content of soluble protein (SP) increased. (2) In the parallel trial, 60 d after sowing, no obvious difference was observed between CK and any steamed leaf litter treatment in terms of the morphological and physiological features stated above (P > 0.05). It indicated that the soil physical properties were not greatly influenced by leaf litter addition in the dose interval designed, or that the release of secondary metabolites from decomposing leaf litter was probably a better reason to explain the inhibition of leaf litter treatment to I. balsamina growth. (3)The compound effect (CE) of leaf litter decomposition on I. balsamina was enhanced with increase of the leaf litter, to 0.169, 0.354, and 0.497, respectively, in treatments of T1, T2 and T3. The study indicated that initial decomposition of C. camphora leaf litter in soil reduces the content of photosynthetic pigments, inhibits photosynthetic capacity and resistance physiology of I. balsamina, weakens its adaptability to the environment, and restrains growth of the plant. © 2015, Science Press. All rights reserved.  相似文献   

12.
Split-plot field experiments, with variety as the main plot, were designed to analyze the microclimate and character of R498 (curved panicle) and R499 (erect panicle) varieties of rice during the full heading day and on the 20th day after full heading. The planting densities assigned to the subplots were 0.23 m (line spacing) × 0.12 m (hole spacing), 0.27 m × 0.14 m, 0.33 m × 0.17 m, 0.38 m × 0.20 m, and 0.40 m × 0.21 m. The results showed that for all the planting densities, the maximum temperature of R499 increased by 1.52 ℃ on an average during the full heading stage, but decreased by 0.66 ℃ on the 20th day after full heading, in comparison to those of R498. The mean daily light intensities of R498 and R499 in sparse planting (0.38 m × 0.20 m, 0.40 m × 0.21 m) were higher than those of other planting density treatments during the full heading stage, being 43.56% and 16.22% higher, respectively, than that of the lowest daily light intensity. The daily light intensity of R498 was hindered by close planting (0.23 m × 0.12 m, 0.27 m × 0.14 m) while that of R499 was inhibited by sparse planting on the 20th day after the full heading stage. The rates of decrease of vertical light intensity of R498 and R499 in sparse planting were the highest among all the planting density treatments, their rates of decrease being 97.96% and 92.56%, respectively, during the full heading stage, and 94.81% and 91.10%, respectively, on the 20th day after the full heading stage. When the planting density was decreased, the variability of plant height, tiller number, and panicle curvature were greater for R499 than those of R498. The rates of incidence of sheath blight for R498 and R499 in the planting specification of 0.38 m × 0.20 m were 66.67% and 68.89%, respectively, which was the most serious among all the planting density treatments. On increasing the effective spike number and panicle weight, both R498 and R499 produced the highest yields with the planting specification of 0.27 m × 0.14 m, among all the planting density treatments. Even when the density was excessively reduced, the value of yield components did not increase any further. Thus, it is better to plant rice with curved panicles (R498) in a reasonable planting density (neither too close nor too sparse), and to plant rice with erect panicles in a reasonably close planting density. © 2018 Science Press. All rights reserved.  相似文献   

13.
To explore the role of endophytic fungi in the decomposition of litter, the endophytic fungi Penicillium sp. strain CG2 (A), Fusarium flavum strain AY13 (B), and Talaromyces strain AJ14 (C) of Cunninghamia lanceolata were added to experimental pots in different forms (mycelium, sterilized fermentation broth, single fungus, and mixed fungi), and a control treatment (CK) was set up (no fungi added). At 10, 30, 60, 90, and 120 days after litter decomposition, a study on the decomposition dynamics of C. lanceolata litter under different treatments was performed. The results showed that the rate of leaf mass loss was the highest in the sterilized fermentation broth treatment A after 120 days, and that there was a significant difference (P < 0.05) between the mycelium treatment AC and the control treatment after 60 days (23.97% higher than the control group). On day 60, the litter carbon content from the mycelium treatment A was significantly different from that of the control (P < 0.05), showing a 16.74% lower value, whereas the litter carbon content of the mycelium treatment B was 21.13% lower than that of the control after 90 days. The nitrogen content of the litters of most mycelium and sterilized fermentation broth treatments was increased compared to that of the control group; there was significant difference (P < 0.05) between the sterilized fermentation broth treatment A and the control (P < 0.05), with a 17.05% higher value than that of the control. Similar to nitrogen, the litter phosphorus content also increased; there was a statistically significant difference between the mycelium treatment A and the control group, with treatment A showing a 46.67% higher value than the control group. The potassium content was 28% lower than that of the control group under the sterilized fermentation broth treatment C, a result that was significantly different from that of the control group (P < 0.05). After treatment for 90 days, the ratio of carbon to nitrogen was the lowest under the treatments with the mycelium A and the mycelium B, with values 25.54% and 25.11% lower than that of the control group, respectively, and a statistically significant difference from that of the control group (P < 0.05). The ratio of carbon to phosphorus was the lowest under the treatment with mycelium A after 60 days, and the result was significantly different from that of the control (P < 0.05), with a 43.05% lower value than the control. Thus, the three endophytic fungi had different effects on the mass loss rate and nutrient content of the litter. The Penicillium sp. strain CG2 (A) had statistically significant effects on the mass loss and nutrient content of leaf litter, which was within the range of fungi fertilizer reference values for the breeding of C. lanceolata. © 2018 Science Press. All rights reserved.  相似文献   

14.
A two-factor randomized complete block experiment was used to explore the remediation by a plant-microorganism combination on soils contaminated by lead (Pb) and cadmium (Cd). Factor A was the amount of fungi, for which four values were considered, namely, 0, 1, 3, and 5 g. Factor B was the level of contamination by lead and cadmium, for which six values were considered, namely, Cd0Pb0, Cd10Pb400, Cd20Pb600, Cd30Pb800, Cd50Pb1200, and Cd80Pb1800 (data in units of mg/ kg). The results showed that the resistant fungi promoted the growth of vetiver (Vetiveria zizanioides). At weights of 1, 3, and 5 g, the resistant fungi increased the biomass of vetiver by 41.9%, 74.9%, and 71.7% respectively. The resistant fungi stimulated the absorption of lead and cadmium by both the aerial and underground parts of vetiver. In the presence of 80 mg/kg of Cd2+ and 1 800 mg/kg of Pb2+, the contents of lead in the aerial parts of vetiver were increased by 120.6%, 265.4%, and 242.9%, while the lead content in the underground parts were increased by 110.3%, 278.2%, and 266.2%, after the addition of 1 g, 3 g, and 5 g of fungi, respectively. The content of cadmium in the aerial parts increased by 113.2%, 238.3%, and 217.3%, while the content of cadmium in the underground parts increased by 103.1%, 298.8%, and 274.4%, after the addition of 1 g, 3 g, and 5 g of fungi, respectively. The addition of fungi strengthened the effect of V. zizanioides to remediate soils contaminated by lead and cadmium, and the remediation after the addition of 3 g of fungi was better than that after treatment with 1 g and 5 g of fungi. The combination of resistant fungi and the heavy metal enrichment plant, vetiver, under different concentrations of lead and cadmium showed that the fungi had a significant effect on the remediation of soils contaminated by lead and cadmium. © 2018 Science Press. All rights reserved.  相似文献   

15.
To explore the current situation and distribution of fish in the eight major estuaries of the Pearl River Estuary in China, acoustic detection and water quality monitoring were conducted in 2018. The results showed that almost living in eight major estuaries were juvenile, the proportion of strong echo was higher in winter, and Jiaomen and Modaomen Estuary were relatively rich in adult fish. In winter, the Humen, Jiaomen, and Yamen Estuary had a high density relatively, for 46.05 (± 50.30), 33.12 (± 93), and 32 (± 78) ind/103 m3, respectively. However, the fish densities of the Hengmen, Modaomen, and Hutiaomen estuaries were higher in summer at 55.72 (± 83.23), 37.52 (± 55) and 36 (± 99) ind/103 m3, respectively. Thus, fish are mainly concentrated in the flood tidal estuary in winter and in the ebb tidal estuary in summer. In addition, fish density was higher in flood tide than in ebb tide, and the strong echo proportion was lower. In winter, the key water quality factors affecting the biodiversity of estuary fish Shannon were chlorophyll a (P < 0.05), while what affected the fish density were turbidity and salinity (P < 0.05). This study showed that the Pearl River estuary was still the main habitat for juvenile fish. However, habitat variability is obvious; hence, it is important to flexibly carry out the delimitation of estuarine fish reserves and ecological restoration. © 2022 Authors. All rights reserved.  相似文献   

16.
In this study, three different hull-less barley varieties were used to prepare steamed cakes, and their nutritional value, sensory qualities, textural properties, and in vitro starch hydrolysis were evaluated. The results showed that the contents of total dietary fiber (4.50%-5.12%), β-glucan (2.96%-3.96%), total flavonoids (12.56-38.73 mg/100 g), and γ-aminobutyric acid (5.08-9.53 mg/100 g) in the steamed hull-less barley cakes were significantly higher than that in the steamed wheat cake, which were 0.65%, 0.23%, 3.93 mg/(100 g), and 2.63 mg/(100 g), respectively. The sensory properties of steamed ordinary hull-less barley and wheat cakes were not significantly different, but the steamed 08-1127 (waxy hull-less barley) cake was softer and out of shape. The springiness, resilience, cohesiveness, gumminess, and adhesiveness of steamed ordinary hull-less barley cakes were similar to those of steamed wheat cake, while those of steamed 08-1127 cakes were significantly lower than those of steamed ordinary hull-less barley cakes. Steamed hull-less barley cake also showed a maximum starch hydrolysis rate (38.76%-42.74%) that was lower than that of steamed wheat cake (49.92%), and the contents of rapidly (11.58%-13.16%) and slowly digested starch (5.34%-7.56%) were lower than that of steamed wheat cake (17.21% and 15.97%, respectively). In addition, the glycemic (59.37-61.67) and hydrolysis indexes (35.82-40.00) were lower than those of steamed wheat cake (76.66 and 67.30, respectively), and the contents of resistant starch (2.74%-3.55%) were higher than those of wheat steamed cake (1.68%). Therefore, the steamed cakes of ordinary hull-less barley had a higher content of nutritional components than the steamed cake of wheat, and the in vitro starch hydrolysis parameters were better than those of steamed wheat cake. When it is necessary to consider both nutritional and sensory qualities, ordinary hull-less barley can be selected as the raw material for steamed cakes, but waxy hull-less barley is not suitable for making steamed cakes. © 2022 Science Press. All rights reserved.  相似文献   

17.
植物光敏色素作用因子(phytochrome interacting factor,PIF)是广泛分布于植物体内的一种转录因子,在植物的生长发育方面有着重要的作用.基于香蕉基因组数据,对香蕉MaPIF基因家族进行基因组鉴定,采用生物信息学分析方法对其进行命名,分析理化性质、蛋白质结构、基因结构、启动子顺势作用元件以及构建系统进化树;分析PIF家族在不同激素处理下的表达情况.结果显示,香蕉MaPIF家族有7个成员,均含有高度保守的bHLH结构域;编码区长度在1 116-2001bp之间,至少包含5个内含子,且大部分位于细胞外;进化树结果可以发现与拟南芥、水稻以及玉米PIF的亲缘关系较近;顺式作用元件预测结果显示,MaPIF上存在多种与激素和光相关的响应元件.qRT-PCR结果显示,MaPIF3-1、MaPIF4、MaPIF4-1在生长素(IAA)、赤霉素(GA)、生长素抑制剂(NPA)处理中均有显著表达,除此之外,所有成员在脱落酸(ABA)处理下均有明显表达.本研究表明MaPIF在香蕉生长发育中激素调控有重要作用.(图7表3参45)  相似文献   

18.
Heart rot is a common soil-borne disease in the pineapple industry, but the situation can be alleviated by the application of bio-fertilizers with beneficial microbiomes. Clarifying the controlling mechanism of bio-organic fertilizer on the high incidence of heart rot is critical in monocultural pineapple cropping patterns. In our study, the soil of continuous cropping pineapple orchards was collected. Three types of carriers (rapeseed cake, peat soil, and coconut bran), biocontrol strains (Bacillus subtilis HL2 and Streptomyces strain HL3), and organic fertilizer (YJ) were composted into different bio-fertilizers (KC, KN, KY, LC, LN, and LY), which were used in pot experiments. The controlling effect of the bio-fertilizer was determined based on the response of pineapple heart rot and bacterial communities to different fertilizing methods. Our results revealed that the incidence of heart rot in bio-fertilizer KC was the lowest, which decreased by 20% and 13.3%, respectively, compared to HF (chemical fertilizer, 16-16-16) and YJ (organic fertilizer). The richness and diversity of soil bacterial communities in all biofertilized treatments (KC, KN, KY, LC, LN, and LY) were significantly higher than those in HF. However, the α-diversity indices of the bio-fertilizers (KC, KN, and KY) were higher than those of LC, LN, and LY, and the bacterial community composition was significantly different. The bacteria GP4, GP6, Bacillus, and Azohydromonas were enriched in KC, KN, and KY, while the relative abundance of Streptomyces increased significantly in LC, LN, and LY. Furthermore, Spearman correlation analysis showed that the relative abundance of these bacterial groups was significantly negatively correlated with the incidence of pineapple heart rot. In summary, the application of bio-organic fertilizers can decrease the incidence of pineapple heart rot by altering the soil bacterial community structure and stimulating beneficial soil microorganisms, which is important for reconstructing the ecological balance in continuous pineapple orchards. © 2022 Authors. All rights reserved.  相似文献   

19.
为明确外源2,4-表油菜素内酯影响苦荞生长、粒重与产量形成的生理机制,以苦荞品种晋荞2号为试验材料,研究不同浓度的外源2,4-表油菜素内酯处理(0、0.1、0.5、1.0和2.0 mg/L)对苦荞籽粒的灌浆特性、淀粉合成酶、根系形态及活力、叶片抗氧化酶活性及光合特性、农艺性状及产量的影响.结果表明:0.5 mg/L处理时苦荞籽粒的灌浆起始势(R0)、最大灌浆速率(Gmax)和平均灌浆速率(Gmean)最大,而达最大灌浆速率的时间(Tmax.G)最小;随2,4-表油菜素内酯施用量的增加,苦荞籽粒的腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)和可溶性淀粉合成酶(SSS)活性、根系总长度等根系形态指标和根系活力、叶片抗氧化酶活性及光合特性指标、株高、主茎直径、单株粒重和千粒重均呈先增加后降低的趋势,且都在0.5 mg/L处理时达最大.外源2,4-表油菜素内酯的施用能在一定程度上促进苦荞产量的增加,其中0.1、0.5和1.0 mg/L处理与对照相比分别提高产量1.10、1.31和1.06倍,2.0 mg/L处理则降低0.96倍.本研究表明适宜的外源2,4-表油菜素内酯处理(0.5 mg/L)能促进苦荞籽粒灌浆,提高粒重和最终的产量.(图1表8参32)  相似文献   

20.
In plant configuration of landscaping, herbaceous plant is often inter-planted with ornamental tree species. But unreasonable plant collocation may reduce the effectiveness of afforestation for the inhibition effect of tree on the growth of understory, and further more affect the greening effect. Camphor (Cinnamomum camphora) is widely planted in landscaping accompanying herbaceous plants including morning glory (Pharbitis nil). But camphor was reported to have allelopathic effect on its adjacent plant, therefore correct selection and collocation of plants has important significance to obtain good greening effect. This research aimed to study by a pot experiment the effects of decomposing leaf litter of Cinnamomum camphora on the growth, phenological traits of Pharbitis nil, as well as modification of these effects by nitrogen application. Three application rates of C. camphora leaf litter including 25, 50 and 100 g/pot (denoted by L25, L50 and L100, respectively) and a control (CK) were implemented. Nitrogen application began on the 34th d of decomposition, with 0.39 g urea being divided into three equal portions and added continuously to each pot. The results showed that (1) The height, basal diameter, leaf area and biomass production of Pharbitis nil were all inhibited sharply by exposure to the leaf litter, being decreased by 32.85%-83.78%, 5.23%-23.00%, 30.31%-58.47%, and 40.34%-84.54%, respectively, with the inhibition effect increasing both in intensity and stability with the increase of leaf litter. Such inhibition effect was obviously alleviated by exogenous nitrogen application. (2) The flowering dynamics of Pharbitis nil was greatly impacted by the leaf litter, with the flower initiation 2.5-10.0 d later and the flowering duration 6.3-11.4 d longer compared to the control. Although the leaf litter-treated plants exhibited more (0.5-3.3) flowers than the control, their quality decreased, and the hundred-grain weight of the seed decreased with the increase of leaf litter. However, the differences among treatments in the reproductive parameters mentioned above reduced after nitrogen fertilization. The results indicated that leaf litter of C. Camphora has a great allelopathic effect on morphological and reproductive growth of Pharbitis nil, which may be attributed to the release of phototoxic substances during the decomposition process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号