首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on observation data of daily sunshine duration from 1961 to 2020 at 175 meteorological observation stations over Qinghai-Tibet Plateau and its surrounding areas, spatial transformation analysis, climate trend analysis and M-K mutation test were used to analyze the temporal and spatial variation characteristics of the seasonal and annual sunshine duration in the region in the last 60 years. The results show that (1) annual average sunshine duration was 2 323 h, the maximum was 3 487 h in Gaer, Tibet, and the minimum was 771 h in Ya'an, Sichuan. The high-value areas were mostly located in western Tibet, northern Qinghai, western Gansu, and Xinjiang, and the low-value areas were mostly located in Nyingchi in Tibet, the mountainous area on the western edge of the Sichuan Basin, and northwestern Yunnan. The highest sunshine duration was recorded in winter (631 h), and the lowest was recorded in autumn (555 h) among the four seasons. (2) The average decrease in annual sunshine duration was 10.27 h/10 a. The largest rates of decrease were mainly in Gannan of Gansu and Ganzi of Sichuan, with the largest rate of decrease of 130 h/10 a. The areas with large rates of increase were mainly in Hotan area of Xinjiang, Liangshan of Sichuan and Lhasa of Tibet, with the largest increase of 61 h/10 a. Among the four seasons, spring exhibited an upward trend, and the remainder exhibited a downward trend. (3) Before 2017, the annual sunshine duration increased but declined after 2017. Spring sunshine duration had the largest number of mutation years, and the earliest mutation time was 1963. Winter had the fewest number of mutation years and the latest mutation time occurred in 2015. In summary, the annual and seasonal sunshine duration of Qinghai-Tibet Plateau vary greatly in space, but with the general characteristics of more sunshine in the northwest and less in the southeast, and sunshine hours were mainly decreasing, with 2017 as a mutation point of annual sunshine duration. Most areas of Qinghai-Tibet Plateau have great potential for photosynthetic production and are suitable for the development of light-loving plants and high-density planting. Shade-loving or shade-tolerant plants, including tea, are suitable for development in remote mountainous areas with low sunshine values in the western part of the basin, including Ya’an, Sichuan, and other areas, such as Medog, Tibet. © 2022 Science Press. All rights reserved.  相似文献   

2.
光合细菌光合产氢机理研究进展   总被引:13,自引:0,他引:13  
Hydrogen production by photosynthetic bacteria has recently received renewed attention because of the global-warming problem.This paper presents a review on the basic process of hydrogen photoproduction and the actions of nitrogenase and hydrogenase in this process.The primary factors affecting the hydrogen production are also presented.The recent researches on efficiency of energy conversion are summarized.  相似文献   

3.
Maintenance of the ecosystem health of a river is of great importance for local sustainable development. On the basis of both qualitative and quantitative analysis of the influence of natural variations and human activities on the ecosystem function of the Weihe River, the changes in major factors affecting its ecosystem health are deter- mined, which include: 1) Deficiency of environment flow: since the 1960s, the incoming stream flow shows an obvious decreasing tendency. Even in the low flow period, 80% of the water in the stream is impounded by dams for agriculture irrigation in the Baoji district. As a result, the water flow maintained in the stream for environmental use is very limited. 2) Deterioration of water quality: the concentrations of typical pollutants like Chemical Oxygen Demand (COD) and NH3-N are higher than their maximum values of the Chinese environmental quality standard. Very few fish species can survive in the River. 3) Deformation of water channels: the continuous channel sedimentation has resulted in the decrease in stream gradient, shrinkage of riverbed and the decline in the capability for flood discharge. 4) Loss of riparian vegetation: most riparian land has been occupied by urban construction activities, which have caused the loss of riparian vegetation and biodiversity and further weakened flood control and water purification functions.  相似文献   

4.
A review of atmospheric mercury emissions,pollution and control in China   总被引:3,自引:0,他引:3  
Mercury, as a global pollutant, has significant impacts on the environment and human health. The current state of atmospheric mercury emissions, pollution and control in China is comprehensively reviewed in this paper. With about 500-800 t of anthropogenic mercury emissions, China contributes 25%-40% to the global mercury emissions. The dominant mercury emission sources in China are coal combustion, non-ferrous metal smelting, cement production and iron and steel production. The mercury emissions from natural sources in China are equivalent to the anthropogenic mercury emissions. The atmospheric mercury concentration in China is about 2-10 times the background level of North Hemisphere. The mercury deposition fluxes in remote areas in China are usually in the range of 10-50μg·m^-2·yr^-1. To reduce mercury emissions, legislations have been enacted for power plants, non-ferrous metal smelters and waste incinerators. Currently mercury contented in the flue gas is mainly removed through existing air pollution control devices for sulfur dioxide, nitrogen oxides, and particles. Dedicated mercury control technologies are required in the future to further mitigate the mercury emissions in China.  相似文献   

5.
The concentrations of total phosphorus (TP) from 83 surface water sampling sites in 29 of the Chinese Ecosystem Research Network (CERN) monitored ecosystems, representing typical agro- and forest ecosystems, were assessed using monitoring data collected between 2004 and 2010 from still and flowing surface water. Results showed that, TP concentrations were significantly higher in agro-ecosystems than those in forest ecosystems both for still and flowing surface water. For agro- ecosystems, TP concentrations in the southern area were significantly higher than those in the northern and north- western areas for both still and flowing surface water, however no distinct spatial pattern was observed for forest ecosystems. In general, the median values of TP within agro- and forest ecosystems did not exceed the Class V guideline for still (0.2mg.L-1) or flowing (0.4mg.L-1) surface water, however, surface water at some agro- ecosystem sampling sites was frequently polluted by TE Elevated concentrations were mainly found in still surface water at the Changshu, Fukang, Linze and Naiman monitored ecosystems, where exceedance (〉 0.2 mg.L-1) frequencies varied from 43% to 78%. For flowing water, elevated TP concentrations were found at the Hailun, Changshu and Shapotou monitored ecosystems, where exceedance (〉 0.4 mg. L-1) frequencies varied from 29% to 100%. Irrational fertilization, frequent irrigation and livestock manure input might be the main contributors of high TP concentrations in these areas, and reduced fertilizer applications, improvements in irrigation practices and centralized treatment of animal waste are necessary to control P loss in these TP vulnerable zones.  相似文献   

6.
Soil erosion has a critical effect on ecological security and socioeconomics, which may deteriorate ecosystem services and common human well-being. The revised universal soil loss equation (RUSLE) was applied to assess soil erosion from 1984 to 2013 in the Tibetan Plateau and analyzed the temporal and spatial variation of soil erosion intensity. Furthermore, the temporal and spatial variation rates of soil erosion were explored across different ecosystems. The results indicated that the annual soil erosion fuctuated in the Tibetan Plateau, the soil erosion intensity decreased from south to north, and the most serious soil erosion was mainly distributed in the southern Tibetan Plateau (Xigaze and Changdu regions, Lhasa, and north of the Shannan region). The soil erosion intensity was higher in shrub, alpine meadow, and sparse vegetation ecosystems. The highest soil erosion was found in alpine meadow (2.17 × 1010 t), followed by alpine grassland (1.59 × 1010 t) and sparse vegetation (1.30 × 1010 t) ecosystems. Meanwhile, although the most serious soil erosion intensity was found in the regions of 3 000-4 000 m altitude, the soil erosion was mainly observed in the regions of 4 000-5 000 m altitude. In the three most recent decades, annual soil erosion decreased at a rate of-1.78 × 108 t/a. Additionally, soil erosion mainly increased in south of the Qiangtang Plateau and in the periphery of the Qaidam basin. Decreased soil erosion was mainly found along the Hengduan Mountains, central Himalayas. Although the increased annual normalized difference vegetation index (NDVI) had positive effects for soil protection, changes in soil erosion was mainly controlled by the change of annual precipitation. Thus, the fragility of ecological systems and increased rainfall erosivity accounted for the obviously increased soil erosion in the alpine grassland ecosystem (1.19 × 10 t/a). However, increased ecosystem stability and decreased rainfall erosivity contributed to the decreased soil erosion in forest and shrub ecosystems, by-0.77 × 10 t/a and-1.65 × 10 t/a, respectively. The slightly decreased rainfall erosivity accounted for a decrease of soil erosion in the sparse vegetation ecosystem (-0.44 × 10 t/a). Meanwhile, soil erosion has decreased in the alpine meadow ecosystem over the past 30 years, which may owing to the relatively higher NDVI that neutralized the increase of rainfall erosivity to some extent. This study revealed serious soil erosion regions and ecosystems in the Tibetan Plateau and explored possible reasons for variations in soil erosion in different ecosystems, which may provide a scientific reference for soil erosion conservation and control in the near future. © 2018 Science Press. All rights reserved.  相似文献   

7.
Ethanol production from lignocellulosic waste has attracted considerable attention because of its feasi- bility and the generation of valuable products. Previous studies have shown that pretreatment and hydrolysis are key processes for lignocellulose conversion. Hydrothermal process is a promising technique because of its efficiency to break down the lignocellulosic structures and produce fermentable hexoses. Most studies in this field have therefore focused on understanding these processes or optimizing the parameters, but commonly reported low yields of fermentable hexoses. The inability to produce high yields of fermentable hexoses is mainly attributed to inadequate information on the conversion mechanisms of lignocellulose, particularly the reaction rules of dissolu- tion, which is a limiting step in the entire conversion process. This paper critically reviewed the progress done in the research and development of the hydrothermal dissolution and hydrolysis of lignocellulose. Principles, processes, and related studies on separate dissolution and asynchronous hydrolysis of lignin, hemieellulose, and cellulose are presented. Potential research prospects are also suggested.  相似文献   

8.
Water consumption in agricultural activities is the main water use in inland oases in Northwest China. Research on water conservation in agriculture is of great significance to alleviate the conflict between the use of agricultural and ecological water and is of great importance to local farmers’ livelihoods. This study, based on traditional irrigation practices (flood irrigation and fixed irrigation frequency) of Minqin County in Shiyang River Basion, was designed to reveal the impacts of five irrigation quotas (1 800, 1 440, 1 080, 720, and 360 m3/hm2) on crop yield, biomass, irrigation water use efficiency (IWUE), and economic water productivity (EWP) to determine the optimal irrigation for five crops and guide local irrigation practices. The results showed that: (1) Under the five irrigation quotas, IWUE of corn, with the highest of 12.27 kg/m3, was higher than the other four crops; (2) The average EWP of cotton with a 2-year-average of 8.0 yuan/m3 was higher than the other four crops. Thus, the economic output of cotton is the best under the same irrigation quota; (3) Considering the yield, IWUE, EWP, and biomass, corn was better than the other four typical crops; and (4) 1 080 m3/hm2 was the optimal irrigation quota for sunflower in local planting practices. In addition, 720 m3/hm2 was suitable for corn, pepper, wheat, and cotton as their irrigation quota. This study shows that reducing the amount of irrigation quota in the Shiyang River Basin can effectively improve local IWUE and EWP. © 2022 Authors. All rights reserved.  相似文献   

9.
Ammonia oxidation, the first and rate-limiting step of nitrification, is mainly performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, the activities of AOA and AOB in soil and their relative contribution to ammonia oxidation are unclear, and whether there is a significant correlation between the quantity of AOA and AOB and the ammonia oxidation rate is also controversial. In this study, quantitative PCR combined with acetylene (C2H2) and 1-octyne inhibition methods were used to determine the quantity and activity of AOA and AOB in wheat, highland barley, and oilseed rape soils in Nyingchi, Lhatse, Sangzhuzi, and Sangri counties on the Qinghai-Tibet Plateau. The results showed that the quantity of AOB ((2.34 ± 0.84) ×105 - (2.65 ± 1.07) ×106 copies g-1 dry soil) was significantly higher than that of AOA ((0.20 ± 0.10) ×104 - (4.02 ± 0.39) ×104 copies g-1 dry soil) in all the soil samples. Soil pH was the key factor affecting the quantity of AOB, and the total phosphorus and ammonium nitrogen in soil were the key factors affecting the quantity of AOA. The rates of ammonia oxidation in the farmland soils of Lhatse (2.42 ± 0.73 mg kg-1 d-1) and Sangzhuzi (3.24 ± 1.15 mg kg-1 d-1) were significantly higher than those in the soils of Nyingchi (1.17 ± 0.43 mg kg-1 d-1) and Sangri counties (0.88 ± 0.57 mg kg-1 d-1). The rates of ammonia oxidation in the farmland soils of Lhatse and Sangzhuzi were dominated by AOB, while those in the farmland soils of Nyingchi and Sangri counties were dominated by AOA. For crops, the ammonia oxidation rates of wheat and oilseed rape soils in all four regions were significantly higher than those of highland barley soil, whereas the activity of AOA and AOB was not influenced by crops. The ratio of nitrogen to phosphorus was the key factor influencing AOA activity, whereas soil pH and total carbon were the main factors influencing AOB activity. Additionally, the quantities of AOA and AOB were not significantly correlated with the total ammonia oxidation rates and AOA and AOB activity. Overall, our study suggests that both AOA and AOB play important roles in ammonia oxidation in farmland soils of the Qinghai-Tibet Plateau. Moreover, it is unreliable to predict the activity of AOA and AOB and their relative contribution to ammonia oxidation directly based on their number of amoA genes, and the activity of AOA and AOB should be directly and accurately measured. These results are important for understanding ammonia nitrogen removal processes, slowing nitrate loss, and reducing the emission of the greenhouse gas nitrous oxide in the farmland ecosystem of the Qinghai-Tibet Plateau. © 2022 Science Press. All rights reserved.  相似文献   

10.
As low oxygen and high ultraviolet (UV) exposure might significantly affect the microbial existence in plateau, it could lead to a specialized microbial community. To determine the abundance and distribution of ammonia-oxidizing archaea (AOA) in agricultural soil of plateau, seven soil samples were collected respectively from farmlands in Tibet and Yunnan cultivating the wheat, highland-barley, and colza, which are located at altitudes of 3200-3800 m above sea level. Quantitative PCR (q-PCR) and clone library targeting on amoA gene were used to quantify the abundances of AOA and ammonia-oxidizing bacteria (AOB), and characterize the community structures of AOA in the samples. The number of AOA cells (9.34 × 10^7-2.32× 10^8 g^-1 soil) was 3.86-21.84 times greater than that of AOB cells (6.91 × 10^6-1.24 × 10^8 g^-1 soil) in most of the samples, except a soil sample cultivating highland- barley with an AOA/AOB ratio of 0.90. Based Kendall's correlation coefficient, no remarkable correlation between AOA abundance and the environmental factor was observed. Additionally, the diversities of AOA community were affected by total nitrogen and organic matter concentration in soils, suggesting that AOA was probably sensitive to several environmental factors, and could adjust its community structure to adapt to the environmental variation while maintaining its abundance.  相似文献   

11.
Based on biologic and environmental materials collected from coastal areas of Bohai Bay (China) in April, 2008, three biotic indices (AZTI's Marine Biotic Index (AMBI), Shannon-Wiener Index and W-statistic) were applied together to evaluate the ecological status of the sampling area. The results showed a clear spatial gradient from a worse ecological status in the near-shore areas (especially around Haihe and Jiyun River Estuaries) to a better status in the offshore areas. While all the three indices could assist decision makers in visualizing spatial changes of organic pollutants in Bohai Bay, two indices, i. e., AMBI and Shannon-Wiener index, were effective in distinguishing sites from Haihe River Estuary, Jiyun River Estuary and other area. However, W-statistic can't tell the differences between estuaries and other area. It would be explained that organic pollutants and/or other environ- mental stresses in Bohai Bay were not strong enough to reduce the size ofmacrozoobenthos, which may cause both of the abundance and biomass curves crossed. To our knowledge, this is the first time that several benthic indices were used to assess the benthic ecological status in Bohai Bay, which gave the similar results. Furthermore, there is indication that the ecological status is related to excess input of wastewater along main rivers and outlets. In a word, AMBI, Shannon-Wiener Index and W-statistic could be able to assess the benthic ecological status of Bohai Bay under the organic pollutants pressure.  相似文献   

12.
Problems treating sewage in rural areas in China have attracted increasing attention in recent years. However, only 6% of rural areas had spray drainage and wastewater treatment systems by the end of 2010. It is necessary to assess the technologies currently used so that sewage treatment in rural areas can be developed appropriately, to provide reliable and affordable waste- water treatment, in these areas. We evaluated the sewage treatment technologies currently used in rural areas by conducting case studies on 62 facilities that had each been operating for at least one year. Our study was carried out between 2009 and 2011, and the aim was to assess the situation during that period and assess any problems involved in decentralized sewage treatment in villages. We found that decentralized sewage treatment is the most popular wastewater treatment method in villages, and that the most common primary treatment technology used in rural areas is the septic tank. Our investigation highlights the need to establish standards for assessing effluent quality, including a range of target pollutants. Our results also show that effluents should be reused to meet the local environmental requirements in different areas, especially in ecologically sensitive areas.  相似文献   

13.
Considering the significant roles of the policies in developing environmental finance, an overview is conducted on the environmental finance policies (EFPs) in China. This paper analyzed the definition, scope, evolution and main instruments of EFPs. The implementation progress of financial activities on each instrument are investigated respectively. Then the experiences learned from and failures discovered in the development of the EFPs are discussed well recommendations for further improvement of the EFPs and their implementation are provided. Our study found that the EFPs have been established in China after a four-phase evolution since the early 1980s. The policies have played a critical role in leading to a rapid development in environmental finance by involving more financial instruments to accomplish the objective-led environmental plans. Driven by the policies, the new green credit (GC), green security (GS), and green insurance (GI) instruments have been phased in as supplements to the conventional command and control approaches to improve the environmental governance of financial activities and pollution sources. However, the market mechanism of financial institution is limited due to their defensive and incapable performance on implementation some of EFP instruments. To further strengthen the effectiveness of EFPs in facilitating environmental man- agement, recommendations are made mainly on the aspects including developing more specific policy guidelines, enhancing information sharing and disclosure, providing sufficient economic incentives, establishing environmental liabilities with financial activities, and involving issues related to climate change, and biodiversity and ecosystem service.  相似文献   

14.
The white rot fungi are members of Basidiomycota, which can degrade lignin and form white rot. They are high producers of extracellular laccases. In the present study, pure culture strain of high-temperature and high-laccase production types (numbered as BUA-01) was isolated from the fruiting bodies of a white rot fungus collected in the campus of Beijing University of Agriculture. The taxonomic characteristic was determined based on morphological and ITS sequence analysis. Furthermore, the optimal culture conditions for the mycelia were determined, including carbon source, nitrogen source, C/N ratio, growth factors, temperature, and pH. Extracellular laccase production was investigated in liquid fermentation with different concentrations of Cu (CuSO4) as inducer. Decolorizing activity of the fermentation broth was assayed using three azo dyes: Evans blue, methyl orange, and eriochrome black T. The results showed that the strain possessed the highest homology toward Trametes hirsuta, with the homology ratio of 100% and the genetic distance of 0, suggesting that the strain BUA-01 belonged to the genus Trametes. The culture condition investigated revealed that the optimal condition for mycelia growth included the following: carbon source, starch; nitrogen source, soybean powder and yeast extract; C/N ratio, 40/1 and 10/1; temperature, 37 °C; and pH, 6.0-7.0. The assayed growth factors had no significant effect on mycelial growth. It demonstrated high laccase activity in liquid fermentation. The highest extracellular laccase activity of 1 081.33 ± 6.3 U/mL was observed in the broth with a Cu adjunction concentration of 0.25 mmol/L after a 96-h culture period. It was about 26-fold higher than that of the control group. The isolated strain exhibited significant decolorizing activity toward the azo dyes Evans blue, methyl orange, and eriochrome black T, with the decolorization rate at 12 h of 93.31% ± 0.16%, 92.37% ± 0.42%, 79.25% ± 0.64%, respectively. This suggests that the strain possesses potential applications in laccase production and dye degradation. © 2018 Science Press. All rights reserved.  相似文献   

15.
It is of great significance for in-situ bioremediation to clarify the migration behavior and biodegradation laws of chlorinated hydrocarbon solvents (CHS) in the vadose zone. We systematically summarized the phase distribution of CHS, the interaction between different phases, and the migration characteristics and clarified the evolution rules of CHS under different phases in the polluted vadose zone. CHS exists in the vadose zone as the NAPL, dissolved phase, adsorbed phase, gas phase, and other phases, where there are three decay evolution stages: early, middle, and late stages. Phase change and diffusion matrix size are important indicators at different stages; at the same time, gas, solid, liquid and NAPL phase CHS have a variety of interactive relationships in the vadose zone. Subsequently, the characteristics of the three main biological metabolic pathways of CHS in the vadose zone–aerobic co-metabolism, direct oxidation and anaerobic reduction, and dechlorination–and their influencing factors were summarized. Generally speaking, the anaerobic dechlorination capacity decreases with a decrease in the number of chlorine atoms, whereas the aerobic degradation capacity increases with a decrease in the number of chlorine atoms. The current status of in-situ remediation of CHS in the vadose zone was summarized using biostimulation and bioaugmentation methods, indicating that adding nutrient substances and injecting anaerobic dechlorination strains of Dehalococcoides are effective means of remediation. Simultaneously, the factors influencing the biodegradation of CHS in the vadose zone were elaborated to acquire a systematic insight into the significance of redox characteristics (oxygen) on the degradation of CHS. Finally, research on the biodegradation of CHS in the vadose zone is prospected, and it is necessary to carry out research on the interactive relationship between different phases of CHS, the data monitoring of CHS, the structure of the functional bacterial community, and research and development of active strains to provide theoretical guidance for the in-situ remediation of CHS in the vadose zone. © 2022 Science Press. All rights reserved.  相似文献   

16.
Non-point source (NPS) pollution simulation in the high-precipitation coastal areas of China is difficult because varying annual typhoon incidence leads to highly contrasting rainfall patterns in dry years and wet years. An IMPULSE (Integrated Model of Non-point Sources Pollution Processes) based NPS model of the Changtan Reservoir watershed, which is a typical high-precipitation coastal area in China, was established based on the analysis of point and NPS pollution data, a digital elevation model, and data on land-use, soil, meteorology, economy, and agricultural management practice. Pre-processed pre-rain- fall soil moisture levels were introduced during the simulation to model the effects of typhoons on hydrology. Rainfall events were simulated sequentially through the year and the model was calibrated and verified using hydrological and water quality data. Accuracy of the simulated rainfall runoff and water quality in the Changtan watershed was found to be acceptable. The study showed that the NPS modeling system could be applied to the simulation and prediction ofNPS loadings in the Changtan Reservoir watershed.  相似文献   

17.
基因间隔序列(ITS)在细菌分类鉴定和种群分析中的应用   总被引:19,自引:0,他引:19  
Use of 16S -23S intergenic transcribed spacer (ITS) variability, as a relatively new method, is becoming an important supplement to the molecular methods based on 16S rRNA for which has a fairly constant size and is not divergent enough to give good separation in close relationships. This paper summarizes the structures and characteristics of ITS regions that are extremely variable in copy number, length and sequence per genome. The ITS region can be amplified easily taking advantage of conserved nucleotide stretches at the 5′of the 16S and 3′of the 23S gene, and the amplicon can contain different amounts of the 16S rDNA by choosing primers at different conserved areas within this gene. These primers are listed and discussed for perfecting the methodology of ITS. Furthermore, some recent progresses on the taxonomy, identification and community analysis of bacteria by means of ITS in epidemiology, ecology and artificial environment are reviewed, as well, the virtues and limitations of that method are discussed. Fig 2, Tab 1, Ref 51  相似文献   

18.
For a long time, it has been argued that the theories and practices devoted to urban planning and management should conform to the fundamental role of planning policies in the production of urban space, but not merely the spatial distribution of the produced services. Towards this wider connotation, this study introduces the notion of Railwayscape, grounded on the theory of ’The Production of Space’, to examine the role of railway station districts as catalysts of urban development through the s...  相似文献   

19.
As a tool for management, query, visualization and analysis of spatially referred information, GIS has been recognized as a method to aid the modeling of diffuse pollution and visualize the results in a spatial context. A common question in integrating diffuse pollution models and GIS is to choose a suitable coupling approach, in which the feature of diffuse pollution models should be taken into account. In this paper, we report on our experience in coupling a distributed diffuse pollution model with a GIS. A prototype of fully integrated system is developed in this paper. This system has high flexibility, extendibility and great data management efficiency. Differences in applicability of loose coupling, tight coupling and fully integrated approaches are addressed. It is concluded that the fully integrated approach can avoid tanglesome data exchange and routine execution and more robust than loose and tight coupling approaches and is suitable for distributed diffuse pollution modes.  相似文献   

20.
To explore the current situation and distribution of fish in the eight major estuaries of the Pearl River Estuary in China, acoustic detection and water quality monitoring were conducted in 2018. The results showed that almost living in eight major estuaries were juvenile, the proportion of strong echo was higher in winter, and Jiaomen and Modaomen Estuary were relatively rich in adult fish. In winter, the Humen, Jiaomen, and Yamen Estuary had a high density relatively, for 46.05 (± 50.30), 33.12 (± 93), and 32 (± 78) ind/103 m3, respectively. However, the fish densities of the Hengmen, Modaomen, and Hutiaomen estuaries were higher in summer at 55.72 (± 83.23), 37.52 (± 55) and 36 (± 99) ind/103 m3, respectively. Thus, fish are mainly concentrated in the flood tidal estuary in winter and in the ebb tidal estuary in summer. In addition, fish density was higher in flood tide than in ebb tide, and the strong echo proportion was lower. In winter, the key water quality factors affecting the biodiversity of estuary fish Shannon were chlorophyll a (P < 0.05), while what affected the fish density were turbidity and salinity (P < 0.05). This study showed that the Pearl River estuary was still the main habitat for juvenile fish. However, habitat variability is obvious; hence, it is important to flexibly carry out the delimitation of estuarine fish reserves and ecological restoration. © 2022 Authors. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号