首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
During 1996-1998, 16 fruit bodies of different species and 204 soil samples down to 10 cm in the close vicinity of the fruit body sites were collected in a coniferous forest in the Ovruch region of Ukraine. The soil samples were sliced into 1 or 2 cm layers and the fungal mycelium was prepared from each of the layers. The 137Cs activity concentration was determined in both soil and mycelium. The mean weight of fungal mycelium was 13.8 mg g(-1) of soil in the upper 4 cm and 7.3 mg g(-1) when measured for the upper 10 cm. At the sites of Paxillus involutus and Sarcodon imbricatus, the mycelium was rather homogeneously distributed in the upper 10 cm and at sites of Xerocomus subtomentosus and Cantharellus cibarius, the mycelium was distributed mostly in the upper layers. The highest 137Cs activity concentrations were found in the upper layers of the soil profile. The 137Cs activity concentrations were usually higher in the fruit bodies compared with the mycelium, with ratios ranging from 0.1 to 66 and a mean of 9.9. The percentage of the total inventory of 137Cs in the soil found in the fungal mycelium ranged from 0.1 to 50%, with a mean value of 15%.  相似文献   

2.
Rice is a staple food in Japan and other Asian countries, and the soil-to-plant transfer factor of 137Cs released into the environment is an important parameter for estimating the internal radiation dose from food ingestion. Soil and rice grain samples were collected from 20 paddy fields throughout Aomori Prefecture, Japan in 1996 and 1997, and soil-to-polished rice transfer factors were determined. The concentrations of 137Cs, derived from fallout depositions, stable Cs and K in paddy soils were 2.5-21 Bq kg(-1), 1.2-5.3 and 5000-13000 mg kg(-1), respectively. The ranges of 137Cs, stable Cs and K concentration in polished rice were 2.5-85 mBq kg(-1) dry wt., 0.0005-0.0065 and 580-910 mg kg(-1) dry wt., respectively. The geometric mean of soil-to-polished rice transfer factor of 137Cs was 0.0016, and its 95% confidence interval was 0.00021-0.012. The transfer factor of 137Cs was approximately 3 times higher than that of stable Cs at 0.00056, and they were well correlated. This implied that fallout 137Cs, mostly deposited up to the 1980s, is more mobile and more easily absorbed by plants than stable Cs in the soil, although the soil-to-plant transfer of stable Cs can be used for predicting the long-term transfer of 137Cs. The transfer factors of both 137Cs and stable Cs decreased with increasing K concentration in the soil. This suggests that K in the soil was a competitive factor for the transfers of both 137Cs and stable Cs from soil-to-polished rice. However, the transfer factors of 137Cs and stable Cs were independent of the amount of organic materials in soils.  相似文献   

3.
Long-lived artificial radionuclides (137Cs, 90Sr) were studied in a Eucalyptus plantation located in the south-west of Spain. Radionuclide concentrations were determined in different types of samples corresponding to specific forest components (soil, trees, herbs and litter). Depth profile distributions were obtained in two selected core soils. Two layers were separately measured in three other cores. The concentration factor, defined as the ratio between the mean activity concentration in a component and the mean activity concentration in the soil, was calculated for each component. The biomass of different components was estimated in order to evaluate the total density concentration (Bq/ha) of the artificial radionuclides (137Cs, 90Sr) in the Eucalyptus plantation. The transfer of the radionuclides between the different forest components can be inferred from the results. Additionally, other naturally occurring radionuclides (40K, 226Ra, 228Ra, 228Ac) were determined for comparison. Transport of radionuclides from forest to a nearby pulp mill is also discussed.  相似文献   

4.
The influence of agrochemical properties of forest soils and growth conditions on 137Cs aggregated transfer factors from soil to different species of forest mushrooms have been analysed. Statistically significant correlations between 137Cs soil to mushroom aggregated transfer factors and agrochemical soil properties have been revealed. The experimental data show that 137Cs aggregated transfer factors depend on the mushroom's trophic group, biological family, genus and species. They also strongly depend on forest soil properties and their values can be estimated with the use of multiple regression equations constructed from agrochemical soil parameters which most closely correlate with the 137Cs transfer parameters for particular mushroom groups.  相似文献   

5.
This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K(2)SO(4)-extractable and microbially stored (137)Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of (137)Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored (137)Cs amounted to 0.64+/-0.14kBqm(-2) which corresponds to about 1.2-2.7% of the total (137)Cs soil inventory. At lower altitudes, microbial (137)Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored (137)Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of (137)Cs in soils and in the (137)Cs uptake by plants.  相似文献   

6.
In this work the role of organic matter in the potential mobility and bioavailability of 137Cs and 60Co in Brazilian soil was investigated. Radish was cultivated in pots containing the top layer (0-20 cm) of a Histosol, Ferralsol and Nitisol spiked with 137Cs and 60Co. In the case of the Ferralsol and Nitisol samples, besides the control, two different rates of organic amendments were used. In these soils, a sequential extraction protocol was used to identify the main soil compartments that could be responsible for the variation of transfer factor values. Our results indicate that organic amendment could be suggested as a practical countermeasure for 137Cs and 60Co contamination, since it reduces bioavailability of radionuclides and, consequently, soil to plant transfer factor values by almost one order of magnitude in a short period of time.  相似文献   

7.
Suspended particle adhesion on aquatic biota can significantly increase the apparent concentration of radionuclides above their endogenous value, leading to an overestimation of the uptake rate and concentration ratios. This study is an attempt to assess quantitatively the importance of suspended particle adhesion on periphyton samples (biological material coating submerged surfaces). The concentrations of 137Cs and stable Cs (133Cs) in periphyton, suspended particles and filtered water were measured to determine the net water-to-periphyton concentration ratios for 137Cs and stable Cs. The net amount of 133Cs (or 137Cs) taken up by periphyton was calculated by subtracting from the total amount of 133Cs (or 137Cs) on the collected material (periphyton + inorganic particles), the 133Cs (or 137Cs) due to the inorganic particles adhering to periphyton. The mass of suspended particles adhering to the periphyton surface was calculated using scandium as an indicator of the mineral fraction of the suspended particles. The relationship between the concentration ratios for 137Cs and stable Cs and suspended particle adhesion on periphyton external surfaces is discussed.  相似文献   

8.
The spatial distribution and behaviour of the global fallout (137)Cs in the tropical, subtropical and equatorial soil-plant systems were investigated at several upland sites in Brazil selected according to their climate characteristics, and to the agricultural importance. To determine the (137)Cs deposition density, undisturbed soil profiles were taken from 23 environments situated between the latitudes of 02 degrees N and 30 degrees S. Sampling sites located along to the equator exhibited (137)Cs deposition densities with an average value of 219Bqm(-2). Extremely low deposition densities of 1.3Bqm(-2) were found in the Amazon region. In contrast, the southern part of Brazil, located between latitudes of 20 degrees S and 34 degrees S, exhibited considerably higher deposition densities ranging from 140Bqm(-2) to 1620Bqm(-2). To examine the (137)Cs soil-to-plant transfer in the Brazilian agricultural products, 29 mainly tropical plant species, and corresponding soil samples were collected at 43 sampling locations in nine federal states of Brazil. Values of the (137)Cs concentration factor plant/soil exhibited a large range from 0.020 (beans) to 6.2 (cassava). Samples of some plant species originated from different collecting areas showed different concentration factors. The (137)Cs content of some plants collected was not measurable due to a very low (137)Cs concentration level found in the upper layers of the incremental soils. Globally, the soil-to-plant transfer of (137)Cs can be described by a logarithmic normal distribution with a geometric mean of 0.3 and a geometric standard deviation of 3.9.  相似文献   

9.
(137)Cs concentration ratios were computed for small mammals collected from the dried sediments of a partially drained, contaminated reservoir. Soil (137)Cs activity concentrations were heterogeneous on small and large spatial scales and had a geometric mean of 253 (range 23-2110) Bq/kg dry weight. Mean (137)Cs activity concentrations in composite cotton rat Sigmodon hispidus and cotton mouse Peromyscus gossypinus samples averaged 2480 (range 556-6670) and 471 (range 96-1000) Bq/kg whole body dry weight, respectively. About 50% of the variance in cotton rat tissue (137)Cs activity was explained by variation in soil (137)Cs activity. Soil-to-animal dry weight concentration ratios averaged 6.0 for cotton rats and 1.2 for cotton mice and were generally similar to (137)Cs concentration ratios for herbivorous, homeothermic animals from other contaminated ecosystems. In the RESRAD-BIOTA dose model, the default wet-weight concentration ratio for (137)Cs in terrestrial animals is 110 resulting in an estimate of internal and external radiation doses to terrestrial biota that is 44 times more than the dose calculated with the actual measured wet-weight concentration ratio for cotton rats (1.6). These results show that site-specific concentration ratios can significantly affect the estimation of dose.  相似文献   

10.
The aim of this work was to study possible binding of 137Cs to various organic components in the soil and fungi, by using various sequential extraction procedures. The retention and binding of 137Cs has been studied in two horizons Of/Oh and Ah/B of a Ukrainian forest soil. The exchangeable fractions 137Cs from soil (sum of H2O and 1 M NH4OAc fraction) were found to be 12% in the organic-rich layer (range 11-14%) and 23% in the organic-poor (range 20-29%). The hydrolysis with 10% H2SO4 resulted in an additional release of 30% of 137Cs from the organic-rich soil (range 30-35%) and 38% from the organic-poor soil horizon (range 27-53%). Extraction with 30% H2O2 released 11 and 15% of the 137Cs activity from organic-rich and organic-poor soil horizons. The corresponding values for treatment with 98.8% NaOCl were about 27% in both types of soil. About 11% of the total 137Cs activity was found in the humic acid fraction, about 5% in the fulvic fraction and 46% in the residue fraction. Relatively high level of 137Cs activity in soil (ca. 50%) was thus still left unsolved in the residue fraction. About 29% of 137Cs activity concentration in fungal mycelia was found as water soluble with a range of 11 to 41%. Additionally 24% of the 137Cs activity from mycelia was released by 1 M ammonium acetate extraction. Together, water and 1 M ammonium acetate extraction released about 53% of the total 137Cs activity in the mycelia. In fruit bodies of mycorrhizal fungi, 68% of the total 137Cs inventory was found to be water soluble at room temperature and 93% at 80 degrees C.  相似文献   

11.
This paper presents the results of an investigation into the spatial distribution of radionuclides of artificial ((239,240)Pu, (137)Cs) and natural ((210)Pb, (40)K) origins in the upper (0-5 cm) soil layers on the Baltic coastline of Lithuania ( approximately 5 km(2) area). The samples were analysed by gamma ray spectrometry and combined radiochemical procedures. The highest (210)Pb, (239,240)Pu and (137)Cs activity concentrations were determined in the forest samples, whereas (40)K activity was rather homogeneous across the study area. Relatively high (239,240)Pu and (40)K activity concentrations were determined along the surf zone. The (210)Pb and (137)Cs activity concentrations showed a gradual increase from the surf zone to the forest. The average activity concentrations of (239,240)Pu, (137)Cs, (210)Pb and (40)K in the beach and forest samples, respectively, were as follows: 0.32+/-0.08 and 0.74+/-0.14; 50+/-4 and 1190+/-50; 4.7+/-2.0 and 48+/-6; 186+/-15 and 216+/-17 Bq/kg.  相似文献   

12.
This study aims to screen plant species native to Taiwan that could be used to eliminate (137)Cs radionuclides from contaminated soil. Four kinds of vegetables and two kinds of plants known as green manures were used for the screening. The test plants were cultivated in (137)Cs-contaminated soil and amended soil which is a mixture of the contaminated one with a horticultural soil. The plant with the highest (137)Cs transfer factor was used for further examination on the effects of K addition on the transfer of (137)Cs from the soils to the plant. Experimental results revealed that plants cultivated in the amended soil produced more biomass than those in the contaminated soil. Rape exhibited the highest production of aboveground parts, and had the highest (137)Cs transfer factor among all the tested plants. The transfer of (137)Cs to the rape grown in the soil to which 100 ppm KCl commonly used in local fertilizers had been added, were restrained. Results of this study indicated that rape, a popular green manure in Taiwan, could remedy (137)Cs-contaminated soil.  相似文献   

13.
Ratios of the fission products (135)Cs and (137)Cs were determined in soil and sediment samples contaminated from three different sources, to assess the use of (135)Cs/(137)Cs as an indicator of source of radioactive contamination. Soil samples from the Chernobyl exclusion zone were found to have to be heavily depleted in (135)Cs ((135)Cs/(137)Cs approximately 0.45), indicative of a high thermal neutron flux at the source. Sludge samples from a nuclear waste treatment pond were found to have a (135)Cs/(137)Cs ratio of approximately 1, whereas sediment collected downstream from a nuclear reactor was highly variable in both (137)Cs activity and (135)Cs/(137)Cs ratio. Comparison of these preliminary results of variability in radiocaesium isotope ratios with reports of Pu isotope ratios suggests (135)Cs/(137)Cs similarly varies with fuel and reactor conditions, and may be used to corroborate other methods of characterizing radioactive contamination.  相似文献   

14.
Two types of soils (Eutric Fluvisol and Chromic Luvisol) and two crops (wheat and cabbage) were investigated for determination of the transfer of 137Cs from soil to plant. Measurements were performed using gamma-spectrometry. Results for the soil characteristics, transfer factors of the radionuclides (TF), and conversion factors (CF) (cabbage/wheat) were obtained. The transfer of 137Cs was higher for Chromic Luvisol for both the plants. Statistically significant dependence of TF of 137Cs on its concentration in soil was established for cabbage. Dependence between K content in the soil and the transfer factor of 137Cs was not found due to the high concentrations of available K. Use of bioconcentration factor (BCF) (ratio between the activity concentration of a radionuclide in a reference plant to its concentration in another plant) is demonstrated and proposed for risk assessment studies.  相似文献   

15.
In this study, we measured 137Cs activity concentrations in the soil samples taken from agricultural lands in the Buyuk Menderes Basin in Turkey in 1997 and 1998. The soil samples were collected from 42 sites in this Basin. The activity concentration of 137Cs was found to range between 2.81+/-0.17 Bq.kg(-1) and 20.75+/-0.29 Bq.kg(-1). The effect of organic matter, clay, silt and sand contents and pH of the soil on the relative adsorption of the 137Cs on the soil surface were also studied.  相似文献   

16.
Forty-four soil samples were taken around the nuclear research centre Rez, near Prague. The mean activity concentrations of 238Pu, 239,240Pu, 241Am, 90Sr and 137Cs in uncultivated soil were 0.010, 0.26, 0.12, 2.7 and 23 Bq.kg(-1), respectively. Contents of radionuclides in cultivated soil were lower and in forest soil higher than in uncultivated soil. The mean activity ratios of 238Pu/239,240Pu, 241Am/239,240Pu, 90Sr/239,240Pu and 239,240Pu/137Cs in uncultivated soil were 0.041, 0.47, 10.9 and 0.013, respectively. The mean activity ratios in cultivated and forest soils were close to the values given above. It follows from the results that the source of 239,240Pu, 90Sr and 137Cs in the studied area is deposition from atmospheric nuclear tests, in the case of 137Cs also deposition from Chernobyl accident. The contribution of the research centre effluents was not proved for these radionuclides. Increased activity ratio of 241Am/239,240Pu indicates the presence of 241Am in the soils studied emanating from sources other than nuclear tests. Uniform distribution of the 241Am/239,240Pu activity ratio around the nuclear research centre and the absence of an area with evidently higher activity ratio, including at sites lying in the main wind direction, suggest that the additional activity of 241Am does not originate from the nuclear research centre. The additional source might be the deposition following the Chernobyl accident.  相似文献   

17.
In spruce forest and peat bog, the migration of 137Cs from soil to plants, fungi, roe deer and consumers has been surveyed. In spruce forest the 137Cs activity concentration in roe deer decreases slowly with time and has superimposed periodic maxima in autumn which are correlated with the mushroom season. The decrease with time can be described by an effective half-life of 3.5 yr caused by a fraction of the 137Cs in the soil becoming unavailable for green grazing plants with time. The additional transfer of 137Cs into roe deer meat during the mushroom season depends on precipitation in July, August and September which also determines the yield of fungi in autumn. Our model confirms the assumption that fungi also have access to a fraction of the 137Cs in the soil which is unavailable for green plants. On peat bog the 137Cs activity concentration in roe deer is higher than in spruce forest and its effective half-life is about 17 yr, due to reversible binding of 137Cs to organic matter in the peat bog.  相似文献   

18.
The concentrations and distribution of gamma-ray emitting isotopes in Burullus Lake were investigated with the aim of evaluating the environmental radioactivity. Particularly in wetlands, natural properties of the environment can cause the actual inventory to be different from the activity originally deposited. The mean concentrations of (226)Ra, (232)Th and (40)K were 14.3, 15.5 and 224 Bq/kg, respectively, in the coastal soils. On the other hand, soil samples from the islands had mean concentrations of 13.5, 17.4 and 341 Bq/kg for (226)Ra, (232)Th and (40)K, respectively. Samples from coast and islands show evidence of possible transfer and accumulation of the (137)Cs radionuclide. The mean (137)Cs activity concentrations in the soil samples were 1.2 and 15.1 Bq/kg in the coast and islands, respectively. The vertical migration of (137)Cs was studied based on its content in the consequently located three soil layers down to 30 cm depth. The radium equivalent, dose rate in air and annual dose equivalent from the terrestrial natural gamma-radiation were evaluated. The mean activity concentrations of the gamma-ray emitting radionuclides in vegetation were relatively low.  相似文献   

19.
Here we review some of the main processes and key parameters affecting the mobility of radiocesium in soils of semi-natural areas. We further illustrate them in a collection of soil surface horizons which largely differ in their organic matter contents. In soils, specific retention of radiocesium occurs in a very small number of sorbing sites, which are the frayed edge sites (FES) born out of weathered micaceous minerals. The FES abundance directly governs the mobility of trace Cs in the rhizosphere and thus its transfer from soil to plant. Here, we show that the accumulation of organic matter in topsoils can exert a dilution of FES-bearing minerals in the thick humus of some forest soils. Consequently, such accumulation significantly contributes to increasing 137Cs soil-to-plant transfer. Potassium depletion and extensive exploration of the organic horizons by plant roots can further enhance the contamination hazard. As humus thickness depends on both ecological conditions and forest management. our observations support the following ideas: (1) forest ecosystems can be classified according to their sensitivity to radiocesium bio-recycling, (2) specific forest management could be searched to decrease such bio-recycling.  相似文献   

20.
Biweekly atmospheric depositions of (137)Cs were measured in Rokkasho, Aomori, Japan from March 2000 to March 2006 to study recent (137)Cs deposition. Although the deposition level was generally lower than the detectable limit, deposition samples collected in spring occasionally had measurable levels of (137)Cs. The annual (137)Cs deposition from 2001 to 2005 was 0.04-0.69 Bq m(-2) with a mean value of 0.27 Bq m(-2). Depositions of insoluble Al, Fe and Ti were strongly correlated with the (137)Cs deposition, suggesting that suspension of soil particles was the main source of the recent (137)Cs deposition. Asian dust events were coincident with some of the significant (137)Cs depositions in spring. It was found that the ratios of (137)Cs/Al and Fe/Al could be used as indices for discriminating Asian dust from suspension of the local surface soil. Backward trajectory analysis suggested southern Mongolian and northeastern China regions as sources of the significant (137)Cs depositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号