首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
分别采用D401和N-117负载Fe(Ⅱ)制备非均相Fenton催化剂,探讨两种催化剂在不同初始溶液pH、初始H2O2质量浓度和保存条件下,催化降解苯酚的效果和铁溶出情况。结果表明:两种催化剂均能拓展Fenton反应pH范围;D401负载Fe(Ⅱ)催化苯酚降解速率较快,苯酚降解率随初始溶液pH升高而下降,溶出铁催化的均相Fenton反应是苯酚降解的主要原因;N-117负载Fe(Ⅱ)催化剂苯酚降解速率随初始溶液pH升高而下降,非均相Fenton反应是主要反应过程;初始H2O2质量浓度升高能使D401负载Fe(Ⅱ)的溶出总铁质量浓度显著升高,但对N-117负载Fe(Ⅱ)影响很小;水中较高的DO能显著降低两种催化剂的苯酚降解效果。  相似文献   

2.
采用Fenton试剂氧化法处理分散橙、分散紫和分散蓝3种染料结晶废母液。研究了H2O2加入量、n(H2O2)#x02236;n(Fe2+)和废母液pH对COD去除率或TOC去除率的影响。对TOC去除反应分段进行了动力学方程拟合,并探讨了反应机理。实验得到的分散橙、分散紫和分散蓝的废母液处理工艺条件:H2O2加入量分别为264.4,352.9,441.2mmol/L;n(H2O2)#x02236;n(Fe2+)分别为20,10,20;废母液pH=3。3种废母液在0~20min和20~120min两个阶段的反应与二级动力学拟合方程的相关性最好。3种废母液经Fenton试剂氧化处理后,部分有机物降解为小分子有机酸,部分有机物完全矿化。  相似文献   

3.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水pH 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3 116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

4.
铝碳微电解法降解水中邻苯二甲酸酯   总被引:1,自引:0,他引:1       下载免费PDF全文
徐焕成  王平  赵雨  严洁 《化工环保》2014,34(6):511-514
采用铝碳微电解法降解水中邻苯二甲酸酯(PAEs)。首先考察了初始废水pH、铝碳质量比和反应时间对邻苯二甲酸二甲酯(DMP)降解率的影响,然后分别考察了超声波频率、其他金属的添加和H2O2加入量对铝碳微电解法降解模拟混合PAEs废水中DMP、邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二丁酯(DBP)的影响。实验结果表明:在初始DMP质量浓度为20 mg/L、初始废水pH为12.0、铝碳质量比为1∶1、反应时间为30 min的条件下,DMP降解率达49.94%;在上述最佳反应条件下处理DMP,DEP,DBP的质量浓度分别为20,10,8 mg/L的模拟混合PAEs废水,当超声波频率为80 kHz时,模拟混合PAEs废水中DMP,DEP,DBP的降解率分别为63.38%,32.75%,32.23%,当铝铁质量比为100∶1时,DMP,DEP,DBP的降解率分别为59.61%,37.39%,31.50%;添加铜和H2O2对PAEs的降解有抑制作用。  相似文献   

5.
采用超声促进、Fe2+活化的K2S2O8/NaHSO3联合体系(US-Fe2+-K2S2O8/NaHSO3体系)降解罗丹明B(RhB)。考察了RhB模拟废水脱色效果的影响因素,并研究了不同处理方法的协同效应,推测了反应机理。实验结果表明:在反应温度25 ℃、初始pH 5.18、超声功率250 W、K2S2O8溶液(4.91 mmol/L)加入量1.2 mL、NaHSO3溶液(4.91 mmol/L)加入量1.2 mL、n(K2S2O8)∶n(Fe2+)=10、反应时间7 min的条件下,RhB模拟废水(50 mL)的脱色率达到89.45%;超声与Fe2+-K2S2O8/NaHSO3体系对RhB的降解产生了协同效应,降解反应符合表观一级反应动力学,速率常数增强因子可达13.6。自由基猝灭实验结果表明,硫酸根自由基和羟基自由基是攻击RhB 分子的活性自由基,硫酸根自由基起主要作用。  相似文献   

6.
用絮凝#x02014;微波辐射#x02014;Fenton试剂氧化法深度处理焦化废水,研究了微波辐射时间、微波功率、FeSO4加入量、H2O2加入量和废水pH对废水处理效果的影响。实验结果表明:在聚合氯化铝加入量为350mg/L、聚丙烯酰胺加入量为12mg/L、废水pH=5、FeSO4加入量为250mg/L、H2O2总加入量为1400mg/L、H2O2分3次投加、微波功率为400W、微波辐射时间为60min的条件下,处理后出水的浊度、色度和COD去除率分别为98.59%,97.62%,86.21%。处理后出水澄清透明,COD为50.34mg/L,满足GB50050#x02014;2007《工业循环冷却水处理设计规范》的要求。  相似文献   

7.
磁性膨润土的制备及类Fenton氧化法处理焦化废水   总被引:1,自引:0,他引:1       下载免费PDF全文
以Al-Fe柱撑膨润土为原料,通过原位氧化沉淀法负载纳米Fe3O4颗粒,制备磁性膨润土。采用XRD,SEM,EDS技术对磁性膨润土进行了表征,并将其作为类Fenton反应催化剂对焦化厂二沉池出水(COD为267.6 mg/L、色度为428度)进行了深度处理,探讨了各反应条件对处理效果的影响。实验结果表明:Fe3O4颗粒较为均匀地分布在膨润土表面,负载牢固;在H2O2加入量70 mmol/L、磁性膨润土加入量0.8 g/L、反应温度30 ℃、初始废水pH 5.0的条件下反应30 h,废水COD和色度的去除率分别达到78.5%和93.4%,COD和色度分别降至57.5 mg/L和28度,满足GB/T 19923—2005《城市污水再生利用 工业用水水质》的要求;磁性膨润土使用4次后,对废水的处理效果仍很稳定。  相似文献   

8.
刘旭  张西慧 《化工环保》2018,38(6):704-709
采用温和的无模板溶液反应合成了α-Fe2O3/AC复合催化剂,作为光Fenton降解双酚A反应的催化剂。通过XRD、SEM、FTIR、DRS、BET、XPS等方法对催化剂的形貌和理化特性进行了分析。结果表明:该催化剂晶型良好,为介孔材料,能够有效吸收和利用紫外光和可见光;该催化剂具有较高的催化活性,稳定性良好;在初始双酚A质量浓度为30 mg/L、溶液pH为4、H2O2加入量为320 mg/L、反应温度为40 ℃、催化剂加入量为1.33 g/L的条件下,双酚A降解率可达91.4%。  相似文献   

9.
采用Fenton氧化—好氧活性污泥法处理邻苯二甲酸二丁酯(DBP)废水,优化了Fenton氧化反应的工艺条件。实验结果表明:在H2O2加入量4 g/L、Fe2+加入量200 mg/L、反应温度60 ℃、废水pH 4、反应时间60 min的最佳工艺条件下,Fenton氧化出水COD为200~250 mg/L,DBP质量浓度约为0.10 mg/L;在污泥质量浓度2 000 mg/L、DO 2~3 mg/L、水力停留时间8 h的条件下,好氧活性污泥法处理出水的COD基本低于50 mg/L,DBP质量浓度约为0.05 mg/L,均满足GB 8978—1996《污水综合排放标准》,可达标排放。  相似文献   

10.
采用化学除油降黏—污泥调理—离心脱水工艺处理某炼油厂废水处理系统的混合污泥,并对工艺条件进行优化。实验结果表明,最佳的工艺条件为:化学除油降黏阶段处理体系的pH=4,反应温度35 ℃,H2O2加入量 2 g/L,m(H2O2)∶ m(Fe2+)=4,反应时间 60 min;污泥调理反应阶段的CaO加入量7.0 g/L;离心脱水阶段在分离因数为1 558时脱水5 min。在此条件下,得到的泥饼的含水率为70.0%~75.0%(w),含油率小于2%(w),污泥比阻约为3.0×107 s2/g。  相似文献   

11.
分别采用臭氧氧化和Fenton氧化两种高级氧化法对毛皮加工工业园区集中废水处理厂的进水进行了预处理,考察了各工艺条件对废水COD去除效果的影响,并比较了两种方法对废水可生化性的改善情况。实验结果表明:在初始废水pH为8、臭氧投加速率为1.2 g/h的最适宜条件下,臭氧氧化法的COD去除率最高达72.7%,废水的可生化性显著提高,废水BOD5/COD由初始的0.06提高至0.12;在,n(Fe~(2+)):月(H_2O_2)=1:10、H_2O_2投加量为1.5 mL/L,、初始废水pH为2.5的最适宜条件下,Fenton氧化的COD去除率最高达33.4%,但废水可生化性不大;经臭氧氧化和Fenton氧化处理后,废水中的不饱和结构物质均得到了有效降解。  相似文献   

12.
MCM-41分子筛负载铁铈催化降解甲基橙   总被引:1,自引:0,他引:1       下载免费PDF全文
采用等体积浸渍法制备了负载型有序介孔Fe-Ce/MCM-41催化剂。研究了该催化剂降解甲基橙的适宜工艺条件,并采用XPS,XRD,TEM技术对该催化剂进行了表征。实验结果表明,该催化剂Fenton氧化降解甲基橙的较适宜工艺条件为:溶液pH 5.0、甲基橙溶液初始质量浓度100 mg/L、催化剂加入量2.0 g/L、H_2O_2浓度20 mmol/L,在此适宜条件下反应120 min时,甲基橙去除率接近100%。表征结果显示:Fe-Ce/MCM-41催化剂主要由铁、铈、氧、碳4种元素组成;铁与铈的摩尔比接近3∶1;铁和铈主要以Fe_3O_4和CeO_2的形态存在于催化剂表面。  相似文献   

13.
陈莉荣  陈毛毛  刘文 《化工环保》2015,35(3):318-323
以拜耳法赤泥为原料、Na Cl为助溶剂,采用酸浸法溶出赤泥中的铁、铝元素,再与硅酸钠、硫酸氧钛反应制备出高效混凝剂含钛聚硅酸铝铁(T-PSAF),并将其用于模拟亚甲基蓝印染废水的脱色。实验结果表明:在硫酸浓度为8 mol/L、液固比(硫酸体积与干赤泥质量之比)为14 m L/g、酸浸温度为80℃、酸浸时间为80 min、Na Cl加入量为0.10 g/g(以干赤泥计)的优化酸浸条件下,铁、铝的浸出率分别为88.25%和73.21%;在n(Fe+Al)∶n(Ti)∶n(Si)=0.3∶0.3∶1、熟化p H为4~5、熟化时间为2 h、混凝剂加入量为25 m L/L的优化混凝条件下,初始亚甲基蓝质量浓度为10 mg/L的废水的脱色率可达87.1%,而当初始亚甲基蓝质量浓度增至150~200 mg/L时废水脱色率可达99%以上。  相似文献   

14.
络合沉淀—Fenton试剂氧化法处理高浓度含氰废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用络合沉淀—Fenton试剂氧化法处理高浓度含氰废水。实验结果表明,在初始废水p H为9、曝气时间为20 min、搅拌时间为20 min、Fe SO4溶液加入量为1.62 m L/L、搅拌转速为40 r/min的络合沉淀反应条件下,在絮凝阶段废水p H为8、n(H2O2)∶n(Fe2+)=20的Fenton试剂氧化反应条件下,处理初始CN-质量浓度为450~550 mg/L的高浓度含氰废水,总CN-去除率达99.9%以上,剩余CN-质量浓度小于0.02 mg/L,COD为50~70 mg/L,BOD5小于20 mg/L,浊度小于0.5 NTU,悬浮物质量浓度小于10 mg/L,满足GB 8978—1996《污水综合排放标准》的要求。  相似文献   

15.
以硅藻土为载体,采用溶胶-凝胶法引入金属氧化物SnO2和Fe2O3,制备了二元氧化物复合型SO42-/SnO2-Fe2O3-硅藻土固体酸催化剂。利用该催化剂与H2O2构成非均相类Fenton试剂氧化体系,催化H2O2产生氧化能力极强的·OH,用于处理实际翠蓝废水和模拟亚甲基蓝废水。催化剂的最佳制备条件为:H2SO4溶液的浓度3 mol/L,浸渍时间2.0 h,焙烧温度550 ℃,焙烧时间3.5 h,焙烧方式为随炉升降温。实验结果表明:采用在最佳工艺条件下制得的催化剂,处理实际翠蓝废水COD去除率可达79.5%、脱色率达99.6%;处理模拟亚甲基蓝废水COD去除率可达83.1%、脱色率达99.6%。  相似文献   

16.
史荣会  董文威  韩祯  张涛 《化工环保》2014,34(2):181-185
采用共沉淀法制备了一种新型催化剂——铁铈钛复合氧化物催化剂,研究了Fe掺加量、体积空速以及H2O和SO2的加入对其选择性催化还原NO性能的影响;采用XRD和SEM等手段对催化剂的结构和形貌进行了表征。表征结果显示,Fe的掺加使催化剂表面的颗粒更均匀,提高了催化剂的分散度。实验结果表明:以Ce(NO3)3,Fe(NO3)3?9H2O,TiOSO4?2H2O为原料、按n(Ce)∶n(Fe)∶n(Ti)=0.2∶0.8∶1配比制得的Ce0.2Fe0.8TiOx为催化剂,在反应温度250 ℃、反应时间3 h、体积空速25 000 h-1的条件下,NO去除率为99.8%,N2选择性为100%;Fe的掺加显著提高了Ce0.2Fe0.8TiOx催化剂的抗H2O和SO2的能力。  相似文献   

17.
采用原位氧化沉淀法制备出仿酶型磁性Fe0-Fe_3O_4复合催化剂,并将其作为非均相类Fenton催化剂用于溶液中对硝基苯酚的降解;采用SEM和XRD等技术对催化剂进行了表征。表征结果显示,Fe_3O_4与Fe0结合牢固,有利于Fe0的分散。实验结果表明:Fe0-Fe_3O_4对对硝基苯酚的降解为拟一级反应;在Fe0与Fe_3O_4的质量比为0.75、Fe0-Fe_3O_4投加量为1.2 g/L、初始H_2O_2浓度为10 mmol/L、初始溶液p H为3、反应温度为30℃的条件下反应90min,反应速率常数为0.067 min-1,COD去除率为77.28%,Fe溶出量为2.12 mg/L;在对硝基苯酚的降解过程中,pH先增大后减小,Fe溶出量先降低后升高;Fe0-Fe_3O_4是一种稳定的催化剂,可再生使用。  相似文献   

18.
采用A/O—Fenton氧化—混凝组合工艺处理丁苯橡胶生产废水。试验结果表明:A/O工段中,在兼氧池HRT 8 h、好氧池HRT 16 h、好氧池MLSS 2 500~3 500 mg/L的优化参数下,平均COD,NH3-N,TP去除率分别为72.9%,96.2%,51.3%;Fenton氧化工段中,在30%(w)H2O2溶液加入量0.2%(φ)、n(H2O2)∶n(Fe SO4)=2∶1、Fenton氧化反应时间70 min、Fenton氧化进水p H 5.0的优化条件下,COD和TP的去除率分别为56.0%和57.0%;A/O—Fenton氧化—混凝组合工艺对COD、NH3-N、TP、浊度的总去除率分别为94.8%,96.2%,100%,94.0%,处理后出水满足GB 8978—1996《污水综合排放标准》中的一级标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号