首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以不锈钢板为阴阳主电极,以柱状活性炭为感应粒子电极,构建固定床三维电极反应器, 并用其深度处理炼油废水。考察了施加电压、水力停留时间、废水pH和曝气量对COD去除效果的影响。实验结果表明,在施加电压10 V、水力停留时间60 min、废水pH=7.0、曝气量120 L/h的优化工艺条件下,处理后出水的COD=27.1 mg/L,满足“超滤—反渗透”单元对进水COD的要求(COD<30.0 mg/L)。  相似文献   

2.
为解决成品油库含油污水处理后COD不达标的问题,以铁碳复合材料为填充粒子、以石墨电极为阴阳极构建了三维电极,考察了三维电极法深度处理成品油库含油污水的处理效果及其影响因素。实验结果表明:在电压15 V、反应时间60 min、废水pH 7、曝气量60 L/h、液固比0.6 m L/g的优化工艺条件下,COD去除率可达72.4%;处理后出水COD降至67 mg/L,满足GB 8978—1996《污水综合排放标准》中的一级标准。  相似文献   

3.
Fenton氧化-混凝-SBR工艺处理糠醛废水   总被引:4,自引:2,他引:2  
采用Fenton氧化-混凝-SBR工艺处理糠醛废水.实验结果表明:Fenton氧化-混凝预处理糠醛废水时,在废水中硫酸亚铁和过氧化氢浓度分别为57.60 mmol/L和5.22 mol/L、pH为2~3的条件下,废水处理后COD可达500 mg/L以下;再经SBR工艺处理,水力停留时间为18 h,最终出水COD去除率可达99.67%.  相似文献   

4.
以焦末为载体的生物流化床反应器处理模拟生活污水,考察了水力停留时间HRT、曝气强度、进水COD浓度、回流速率和进水pH值等因素对生物流化床短期内的影响.现条件下,生物流化床处理模拟生活污水的最佳工艺条件为:HRT 2.5~3.0 h、曝气强度45.9 m3/(m2·h)、进水COD浓度不超过2 000 mg/L、回流液速2.48 cm/s、pH值7.0~8.0,此时COD去除率达90%以上.  相似文献   

5.
采用聚丙烯腈基石墨毡电极,以NaCl为电解质,在恒流电解的条件下,对质量浓度为1 000 mg/L、COD=3 672 mg/L的模拟邻甲酚废水进行预处理。研究了电解时间、初始废水pH、NaCl加入量、电流密度对邻甲酚去除率的影响,考察了废水的COD变化,并探讨了反应机理。实验结果表明:石墨毡电极具有较好的导电性、吸附性,对邻甲酚具有较好的电化学氧化性能;常温常压下,初始废水pH为6~7、电流密度为90 A/m2、向300 mL废水中加入0.5 g NaCl时,经4 h电解,邻甲酚的去除率达到97.1%,COD的去除率达到47.3%;处理后废水的BOD5/COD由0.04提高至0.33,可不经稀释直接进行生物处理。  相似文献   

6.
采用Fenton氧化—好氧活性污泥法处理邻苯二甲酸二丁酯(DBP)废水,优化了Fenton氧化反应的工艺条件。实验结果表明:在H_2O_2加入量4 g/L、Fe2+加入量200 mg/L、反应温度60℃、废水pH 4、反应时间60 min的最佳工艺条件下,Fenton氧化出水COD为200~250 mg/L,DBP质量浓度约为0.10 mg/L;在污泥质量浓度2 000 mg/L、DO 2~3 mg/L、水力停留时间8 h的条件下,好氧活性污泥法处理出水的COD基本低于50 mg/L,DBP质量浓度约为0.05 mg/L,均满足GB 8978—1996《污水综合排放标准》,可达标排放。  相似文献   

7.
采用水力空化-O3氧化与超声吸附法联合处理煤气化废水。吸附剂以钙基膨润土为原料,经十六烷基三甲基溴化铵改性制得。通过单因素实验分别探讨了水力空化-O3氧化与超声吸附的适宜处理条件,并在该条件下对废水进行联合处理。实验结果表明:在O3通量194.4 mg/L、空化时间60 min、入口压力0.4 MPa、废水pH 10.00的优化条件下,水力空化-O3氧化对COD和苯酚的去除率分别达67.3%和57.5%;在此基础上进一步采用超声吸附法处理废水,在吸附剂投加量0.06 g/mL、超声时间60 min、废水pH 4.00、吸附温度25 ℃的优化条件下,处理后出水中COD和苯酚质量浓度分别降至317.1 mg/L和117.9 mg/L;COD和苯酚的总去除率分别达97.9%和96.6%。  相似文献   

8.
采用水力空化-Fenton氧化联合超声吸附处理煤气化废水,考察了单独Fenton氧化及单独水力空化工艺条件,并对Fenton氧化、水力空化和水力空化-Fenton氧化工艺处理过程进行了动力学初探。实验结果表明:在反应时间60 min、废水pH 3.0、Fe~(2+)加入量900 mg/L、H_2O_2加入量3 600 mg/L、空化压力0.4 MPa的条件下,水力空化-Fenton处理煤气化含酚废水的COD和苯酚去除率分别为93.05%和90.29%;进一步采用超声吸附处理后,出水COD和苯酚质量浓度分别为92.9 mg/L和4.5 mg/L,达到GB 8978—1996《污水综合排放标准》三级指标。  相似文献   

9.
以炭纤维为载体,采用电沉积法制备零价铁/炭纤维,考察了零价铁/炭纤维对制药废水COD的去除效果。SEM表征结果显示,炭纤维表面光滑,炭纤维上负载的零价铁呈现大小不一的球状。实验结果表明:在初始废水p H为5、铁碳质量比为2∶1、固液比(固体质量以铁计)为90 g/L、曝气量为80 L/h的条件下,采用零价铁/炭纤维体系处理COD=10 082.63 mg/L、色度为135倍、p H=7.3、SS=250 mg/L、Na Cl质量分数为3.5%的制药废水,COD去除率可达72.79%,出水COD为2 743.48 mg/L,减轻了后续生化处理工艺的进水负荷;零价铁/炭纤维降解制药废水中COD的过程符合三级反应动力学方程。  相似文献   

10.
采用Fenton氧化—好氧活性污泥法处理邻苯二甲酸二丁酯(DBP)废水,优化了Fenton氧化反应的工艺条件。实验结果表明:在H2O2加入量4 g/L、Fe2+加入量200 mg/L、反应温度60 ℃、废水pH 4、反应时间60 min的最佳工艺条件下,Fenton氧化出水COD为200~250 mg/L,DBP质量浓度约为0.10 mg/L;在污泥质量浓度2 000 mg/L、DO 2~3 mg/L、水力停留时间8 h的条件下,好氧活性污泥法处理出水的COD基本低于50 mg/L,DBP质量浓度约为0.05 mg/L,均满足GB 8978—1996《污水综合排放标准》,可达标排放。  相似文献   

11.
采用Fenton试剂氧化—曝气生物滤池组合工艺对某制药厂常规生化处理后的废水进行深度处理.实验结果表明,Fenton试剂氧化的适宜操作条件为pH=5,ρ(H2O2)∶COD=1.5、n(H2O2)∶n(Fe2+)=2,反应时间为60min.经氧化处理后的废水再进入曝气生物滤池进行生化处理,最终出水COD小于80 mg/L,色度小于10倍,处理效果良好.  相似文献   

12.
正该专利涉及一种采用三维电极处理苯酚废水的方法。包括如下步骤:1)取250 mL质量浓度为500mg/L的苯酚废水置于三维电极反应器中,通电,采用电化学氧化法处理苯酚废水;2)向苯酚废水中加入质量浓度为1~10 g/L的电解质,曝气,使苯酚废水与电解质充分混合,加入纯碱调节苯酚废水的pH为2~6,在电极电压为5~8 V条件下电解120 min。  相似文献   

13.
反硝化处理硝氮废水的动力学研究   总被引:2,自引:0,他引:2  
对反硝化法处理高浓度硝氮废水的动力学进行了研究,获得了最佳动力学条件,在温度为30℃左右,pH为7-8,MLSS为3g/L左右,C/N为0.95-1.0,进水硝氮质量浓度为300mg/L,水力停留时间为6-8h的条件下,出水NOx^--N的质量浓度小于20mg/L,COD小于100mg/L。  相似文献   

14.
通过掺杂少量过渡金属Sb和稀土元素Dy,利用复合电沉积—高温氧化法制备Sb-Dy-SnO2/Ti电极,并应用该电极对石化污水反渗透浓水(COD=120~260 mg/L、pH=6.5~7.5)进行电催化氧化实验。实验结果表明:在n(Sb)∶n(Sn)=0.05、n(Dy)∶ n(Sn)=0.015、焙烧温度650 ℃、焙烧时间2 h的条件下,制备的Sb-Dy-SnO2/Ti电极具有良好的导电性及电催化活性;以在上述条件下制得的Sb-Dy-SnO2/Ti电极为工作电极,在进水COD 220 mg/L、电流密度15 mA/cm2、废水pH 7.2、反应时间90 min的条件下,出水COD为47 mg/L,COD去除率为79.1%,达到DB 21/1627—2008《辽宁省污水综合排放标准》中的废水排放要求(COD≤50 mg/L)。  相似文献   

15.
加压生物氧化法处理助剂厂废水的研究   总被引:1,自引:0,他引:1  
用新研制开发的加压生物氧化设备对助剂厂可生化废水进行了处理试验,在曝气罐中废水压力为200kkPa、进水COD为2800-3000mg/L、曝气11-12h的条件下,处理后出水的COD≤200mg/L,达到行业排放标准。  相似文献   

16.
为了解决高浓度焦化废水不经稀释无法直接处理的问题,将HENGJIE高效混合菌制剂和粉末活性炭加入O1AO2废水处理系统中,进行焦化废水的中试试验。试验结果表明,该方法可对未经稀释的高浓度焦化废水直接进行处理,且系统启动快,菌种对污染物的降解效率较高。在O1段水力停留时间为20h、A段水力停留时间为35h、O2段水力停留时间为25h的条件下,经过20d的连续运行后,使进水COD由5435.7mg/L(平均值)降至出水COD369.3mg/L(平均值),COD去除率为93.17%;使进水中NH3-N平均质量浓度由67.80mg/L降至出水中NH3-N平均质量浓度1.04mg/L,NH3-N去除率为98.18%,废水色度为100~200。除废水COD与色度外,其他检测项目均可达到废水一级排放标准。  相似文献   

17.
采用混凝法分别以聚合氯化铁(PFC)、聚合氯化铝(PAC)和聚合硫酸铁(PFS)为混凝剂处理天津某石油化工厂二级氧化处理工艺出水,PFC对废水COD的去除效果最好,在PFC加入量为120mg/L时,废水的COD去除率最高,为22.35%。经正交实验确定了Fenton试剂氧化法处理废水的最佳实验条件为:Fe^2+加入量290mg/L、H2O2加入量100mg/L、pH=6、反应时间30min,此时COD去除率为20.45%。活性炭吸附法对废水的处理效果随活性炭加入量增加而改善,活性炭的最佳加入量为2000mg/L,此时废水的COD去除率最高,为87.78%。  相似文献   

18.
用絮凝#x02014;微波辐射#x02014;Fenton试剂氧化法深度处理焦化废水,研究了微波辐射时间、微波功率、FeSO4加入量、H2O2加入量和废水pH对废水处理效果的影响。实验结果表明:在聚合氯化铝加入量为350mg/L、聚丙烯酰胺加入量为12mg/L、废水pH=5、FeSO4加入量为250mg/L、H2O2总加入量为1400mg/L、H2O2分3次投加、微波功率为400W、微波辐射时间为60min的条件下,处理后出水的浊度、色度和COD去除率分别为98.59%,97.62%,86.21%。处理后出水澄清透明,COD为50.34mg/L,满足GB50050#x02014;2007《工业循环冷却水处理设计规范》的要求。  相似文献   

19.
铁炭内电解预处理阿维菌素废水   总被引:5,自引:0,他引:5  
采用铁炭内电解预处理阿维菌素废水,当原水pH为3.7、COD为31600mg/L、AVM含量为204μg/L时,最佳工艺条件为铁炭比1:1、停留时间30min、混凝pH8-9时,废水COD和AVM的去除率分别达到19.5%和68.5%,为后续生化处理创造了有利条件。  相似文献   

20.
混凝—催化氧化法处理丁苯橡胶生产废水   总被引:3,自引:0,他引:3  
郭青  赵旭涛  王维 《化工环保》2006,26(6):494-497
以聚合氯化铝(PAC)、阴离子聚丙烯酰胺(PAM)为混凝剂,以H2O2-O3为氧化剂,采用混凝-催化氧化法处理对丁苯橡胶生产废水。考察了混凝剂种类及其加入量、废水pH对混凝处理效果的影响,氧化剂及其加入量、反应时间和废水pH对COD去除率的影响。实验得出的最佳工艺条件:混凝实验,废水pH为7、PAC和PAM加入量为400mg/L和4mg/L;催化氧化实验,废水pH为7~8、H2O2加入量为200mg/L、H2O2与O3的质量比为0.5。处理后,废水COD从860mg/L降至145mg/L,COD去除率达83.1%,出水水质达到国家二级排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号