首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of polybrominated dibenzofurans (PBDF) and dibenzodioxins (PBDD) during the pyrolysis of different polymers containing brominated organic flame retardants was investigated. The pyrolyses were conducted at two different temperatures (600°C and 800°C) using three different oven configurations. Both the pyrolysis gases and the solid residues were analysed for PBDF and PBDD.

PBDF were found in almost all samples, but both the concentration and the degree of bromination varied greatly. The largest yields of PBDF in the percent range were measured in the pyrolysis products of polymers containing brominated diphenyl ethers. The other flame retardants generally yielded only a few ppm of PBDF. PBDD are formed only in a few samples and related to the PBDF in very low concentrations.  相似文献   


2.
中孔分子筛AI-MCM-41催化裂解聚烯烃反应研究   总被引:1,自引:0,他引:1  
采用水热合成法制备了不同硅铝比的中孔分子筛AI-MCM-41,将其应用于高密度聚乙烯(HDPE)和聚丙烯(PP)的催化裂解反应。通过改变硅铝比、反应温度和催化剂用量,对Al-MCM-41催化HDPE和PP裂解反应的规律进行了探讨,研究表明,HDPE裂解反应受硅铝比的影响较大;而对于PP裂解反应,硅铝比在一定范围内对催化剂活性的影响不明显。另外,与热裂解和HZSM-5小孔分子筛的催化裂解结果进行了比较,结果证明A1-MCM-41具有较高的催化活性和较高的液体产物收率,尤其适合于空间位阻较大的PP的催化裂解反应。  相似文献   

3.
餐厨垃圾中典型组分的裂解液化特征研究   总被引:1,自引:1,他引:0  
利用实验室规模的实验装置管式加热炉进行餐厨垃圾热解实验,实验分析了反应温度对餐厨垃圾热解产物分布的影响,米饭、白菜、猪肉、塑料和纸5种原料在最佳温度下可实现热解油质量产率的最大化,分别为45.02%、24.55%、61.19%、73.77%和24.86%。其中,米饭和白菜热解油含水率较高,可达到30%~40%,将含水率降到15%后,测定热值分别为25.51 MJ/kg和17.75 MJ/kg。塑料和纸混合热解时,塑料热解过程的放热效应可缩小纸的热解温度区间,增加热解油产量。红外光谱分析厨余热解油包含多种含氧有机物。通过气质联用仪(GC-MS)分析塑料热解油和塑料与纸混合热解油在180℃以下蒸馏出的液相产物,主要组分为烷烃和烯烃,从成分和热值分析,与汽油、柴油相近。  相似文献   

4.
中孔分子筛Al-MCM-41催化裂解聚烯烃反应研究   总被引:2,自引:0,他引:2  
采用水热合成法制备了不同硅铝比的中孔分子筛A l-MCM-41,将其应用于高密度聚乙烯(HDPE)和聚丙烯(PP)的催化裂解反应。通过改变硅铝比、反应温度和催化剂用量,对A l-MCM-41催化HDPE和PP裂解反应的规律进行了探讨,研究表明,HDPE裂解反应受硅铝比的影响较大;而对于PP裂解反应,硅铝比在一定范围内对催化剂活性的影响不明显。另外,与热裂解和HZSM-5小孔分子筛的催化裂解结果进行了比较,结果证明A l-MCM-41具有较高的催化活性和较高的液体产物收率,尤其适合于空间位阻较大的PP的催化裂解反应。  相似文献   

5.
The controlled pyrolysis of polyethylene/polypropylene/polystyrene mixed with brominated high-impact polystyrene containing decabromodiphenyl ether as a brominated flame-retardant with antimony trioxide as a synergist was performed. The effect of decabromodiphenyl ether and antimony trioxide on the formation of its congeners and their effect on distribution of pyrolysis products were investigated. The controlled pyrolysis significantly affected the decomposition behavior and the formation of products. Analysis with gas chromatograph with electron capture detector confirmed that the bromine content was rich in step 1 (oil 1) liquid products leaving less bromine content in the step 2 (oil 2) liquid products. In the presence of antimony containing samples, the major portion of bromine was observed in the form of antimony bromide and no flame-retardant species were found in oil 1. In the presence of synergist, the step 1 and step 2 oils contain both light and heavy compounds. In the absence of synergist, the heavy compounds in step 1 oil and light compounds in step 2 oils were observed. The presence of antimony bromide was confirmed in the step 1 oils but not in step 2 oils.  相似文献   

6.
Polyethylene terephthalate (PET) is a widely used thermoplastic. PET residues represent on average 7.6 wt% of the different polymer wastes in Europe. Pyrolysis of these wastes is attracting increasing interest, and PET is a potential candidate for this thermal process. The paper measures and discusses the kinetics of the pyrolysis reaction in terms of the reaction rate constants as determined by dynamic thermogravimetric analysis, with special emphasis on the required heating rate to obtain relevant results. The product yields and compositions are also determined. Gaseous products represent 16-18 wt%. The amounts of condensables and carbonaceous residue are a function of the operating mode, with slow pyrolysis producing up to 24 wt% of carbonaceous residue. Major condensable components are benzoic acid, monovinyl terephthalate, divinyl terephthalate, vinyl benzoate, and benzene. The present paper complements previous literature findings by (1) the study of the influence of the heating rate on the reaction kinetics in dynamic pyrolysis tests, (2) the isothermal investigation in a fluidized bed reactor to pyrolyze PET, and (3) the assessment of upgrading and recovery of the products. The paper concludes with a proposed reactor recommendation for PET pyrolysis, in either the bubbling or circulating fluidized bed operating mode.  相似文献   

7.
Ji L  Hervier A  Sablier M 《Chemosphere》2006,65(7):1120-1130
Pyrolysis experiments were conducted to elucidate the effects of metal chlorides on the thermal degradation of low-density polyethylene on a continuous pyrolysis temperature range of 600 degrees C to 1100 degrees C. The present work focusses on the ratio of aromatics generated on increasing the pyrolysis temperature in the presence of metal salts, iron(II), iron(III) and copper(II) chlorides. It was observed that beside alpha,omega-dienes, alpha-olefins and n-alkanes which are usually observed during the thermal decomposition of polyethylene, the level of aromatics noticeably increases with the addition of metal salts. At high temperatures, the formation of these aromatics took place in such a way that they become the major products when polyethylene is pyrolyzed in presence of FeCl(3) and CuCl(2). Quantification of the effect of metal salts has been tempted comparing the variation of the ratio of aromatics with pyrolysis temperatures. Mechanisms responsible for the formation of these aromatics in presence of metal salts have been tentatively investigated. They are proposed to result from cyclization/dehydrogenation reactions similar to those observed during the thermal decomposition of polyethylene, but with an increased efficiency due to the metal salts.  相似文献   

8.
Sludge from municipal wastewater treatment plants and organic fines from mechanical sorting of municipal solid waste (MSW) are two common widespread waste streams that are becoming increasingly difficult to utilise. Changing perceptions of risk in food production has limited the appeal of sludge use on agricultural land, and outlets via landfilling are diminishing rapidly. These factors have led to interest in thermal conversion technologies whose aim is to recover energy and nutrients from waste while reducing health and environmental risks associated with material re-use. Pyrolysis yields three output products: solid char, liquid oils and gas. Their relative distribution depends on process parameters which can be somewhat optimised depending on the end use of product. The potential of pyrolysis for the conversion of wastewater sludge (SS) and organic fines of MSW (OF) to a combustion gas and a carbon-rich char has been investigated. Pyrolysis of SS and OF was done using a laboratory fixed-bed reactor. Herein, the physical characterisation of the reactor is described, and results on pyrolysis yields are presented. Feedstock and chars have been characterised using standard laboratory methods, and the composition of pyrolysis gases was analysed using micro gas chromatography. Product distribution (char/liquid/gas) from the pyrolysis of sewage sludge and composted MSW fines at 700°C for 10 min were 45/26/29 and 53/14/33%, respectively. The combustible fractions of pyrolysis gases range from 36 to 54% for SS feedstock and 62 to 72% from OF. The corresponding lower heating value range of sampled gases were 11.8–19.1 and 18.2–21.0 MJ m?3, respectively.  相似文献   

9.
Thermal degradation products of spruce needles   总被引:1,自引:0,他引:1  
Spruce needles are analysed by in-source pyrolysis (Py)-field ionization (FI) mass spectrography and Curie-point Py-gas chromatography/electron ionization mass spectrometry. The identified thermal degradation products allow the interpretation of the FI mass signals. It could be shown that Py-FI mass spectra of plant materials are representative fingerprints which consist primarily of molecular ions of Py products derived from the thermal degradation of the main constituents of spruce needles such as carbohydrates, lignin, lipids and proteins. Primary building blocks of these biopolymers form characteristic Py products of spruce needles. Furthermore, over 500 different molecular ion species of volatilized, thermostable plant constituents are recorded using FI as soft ionization method. The present study shows that Py-FIMS is suitable for the rapid and comprehensive characterization of complex biological materials, without pretreatment of the sample except of drying and milling. The presented results contribute to the basic knowledge for the evaluation of the causes of the present tree damage.  相似文献   

10.
以润滑油废白土为原料,利用电热解法,研究了热解终温、加热速率和CaO添加量对热解产物的影响。实验结果表明:热解终温对热解产物的影响最为显著。随着热解终温的升高,不凝气产量和产油率均迅速增加。当热解终温达到600℃时,其增加的速率逐渐缓慢增大。当控制热解终温为800℃、加热速率为16℃/min、CaO添加量为0.5%时,富氢气体产量为189.2 L/kg,气体中主要成分为H2和CH4,其含量分别为27.97%和41.64%;热解残渣含油率和重金属溶出物均低于标准规定值,热解油产率为10.98%,回收率为38.94%,其主要成分为汽油、柴油和重油3部分组成,分别含19.13%、31.35%和49.52%。  相似文献   

11.
Levoglucosan (L), mannosan (M), galactosan (G) and other cellulose and lignin markers from burn tests of Miocene lignites of Poland were determined by gas chromatography–mass spectrometry (GC–MS) to assess their distributions and concentrations in the smoke. Their distributions were compared to those in the pyrolysis products of the lignites. Levoglucosan and other anhydrosaccharides are products from the thermal degradation of cellulose and hemicellulose and are commonly used as tracers for wood smoke in the atmosphere. Here we report emission factors of levoglucosan in smoke particulate matter from burning of lignite varying from 713 to 2154 mg kg?1, which are similar to those from burning of extant plant biomass. Solvent extracts of the lignites revealed trace concentrations of native levoglucosan (0.52–3.7 mg kg?1), while pyrolysis yielded much higher levels (1.6–3.5 × 104 mg kg?1), indicating that essentially all levoglucosan in particulate matter of lignite smoke is derived from cellulose degradation. The results demonstrate that burning of lignites is an additional input of levoglucosan to the atmosphere in regions where brown coal is utilized as a domestic fuel. Interestingly, galactosan, another tracer from biomass burning, is not emitted in lignite smoke and mannosan is emitted at relatively low concentrations, ranging from 7.8 to 70.5 mg kg?1. Thus, we propose L/M and L/(M + G) ratios as discriminators between products from combustion of lignites and extant biomass. In addition, other compounds, such as shonanin, belonging to lignans, and some saccharides, e.g., α- and β-glucose and cellobiose, are reported for the first time in extracts of bulk lignites and of smoke particulate matter from burning these lignites.  相似文献   

12.
Abstract

The growing amount of rubber waste, such as that from tires and cables, has resulted in serious environmental problems. Since rubber waste is not easily biodegradable even after a long period of landfill treatment, material and energy recovery is the preferable alternative to disposal. The potential offered by waste tire pyrolysis for solving both energy and waste treatment problems is widely recognized. Pyrolysis is one method of inducing thermal decomposition without using any oxidizing agent, or using such a limited supply of the agent that oxidization does not proceed to an appreciable extent. The latter may be described as autothermal pyrolysis and will be studied in the present work.

The main objective of this research was to study the operating parameters of autothermal pyrolysis of scrap tires in a laboratory-scale fluidized bed reactor with a 100-cm bed height (10 cm I.D.) and a 100-cm freeboard (25 cm I.D.). Scrap tires were pyrolyzed in a limited oxygen supply, so that the heat for pyrolysis of the scrap tires was provided by combustion of some portion of the scrap tires. The operating parameters evaluated included the effect on the pyrolysis oil products and their relative proportions of (1) the air factor (O.O7–O35); (2) the pyrolysis temperature (370–570 °C); and (3) the catalyst added (zeolite and calcium carbonate). The results show that: (1) the composition of the liquid hydrocarbon obtained is affected significantly by the air factor; (2) the higher operating temperature caused a higher yield of gasoline and diesel; (3) the yield of gasoline increased due to the catalyst zeolite added, and the yield of diesel increased due to the addition of the catalyst calcium carbonate; (4) the principal constituents of gasoline included dipentene and diprene.  相似文献   

13.
This article reports the computational and experimental results of the thermal decomposition of permethrin, a potential source of dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). We have performed a quantum chemical analysis by applying density functional theory to obtain the decomposition pathways of permethrin and the formation mechanism of dibenzofuran. We have conducted the pyrolysis experiments in a tubular reactor and identified the pyrolysis products to demonstrate the agreement between the experimental measurements and quantum chemical calculations. The initiation of the decomposition of permethrin involves principally the aromatisation of permethrin into 3-phenoxyphenylacetic acid, 2-methylphenyl ester (J) and concomitant loss of 2HCl. This rearrangement is followed by the rupture of the O–CH2 linkage in J, with a rate constant derived from the quantum chemical results of 1 × 1015 exp(−68 kcal/mol/RT) s−1 for temperatures between 700 and 1300 K. This is confirmed by finding that the rate constant for unimolecular rearrangement of permethrin into J is 1.2 × 1012 exp(−53 kcal/mol/RT) s−1 over the same range of temperatures and exceeds the direct fission rate constant at all temperatures up to 850 ± 120 °C as well as by the experimental detection of J prior to the detection of the initial products incorporating diphenyl ether, 1-methyl-3-phenoxybenzene, 3-phenoxybenzaldehyde and 1-chloromethyl-3-phenoxybenzene. As the temperature increases, we observe a rise in secondary products formed directly or indirectly (via phenol/phenoxy) including aromatics (naphthalene), biphenyls (biphenyl, 4-methyl-1,1′-biphenyl) and dibenzofuran (DF). In particular, we discover by means of quantum chemistry a direct route from 2-phenoxyphenoxy to naphthalene. We detect no polychlorinated dibenzo-p-dioxins and dibenzofurans. Unlike the case of oxidative pyrolysis [Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M., 2007b. Formation of dioxins in fires of arsenic-free treated wood: Role of organic preservatives. Environ. Sci. Technol. 41, 6425–6432] where significant yields of both PCDD and PCDF were obtained, under non-oxidative conditions the thermal decomposition of permethrin does not form appreciable amounts of PCDD or PCDF and the presence of oxygen (and/or a sizable radical pool) appears necessary for the formation of dibenzo-p-dioxin itself or PCDD/F from phenol/phenoxy.  相似文献   

14.
This study tested the feasibility of using pyrolysis (Py)-gas chromatography (GC)/mass spectrometry (MS) to obtain organic chemical species data suitable for source apportionment modeling of soil-derived coarse particulate matter (PM10) dust on ambient filters. A laboratory resuspension apparatus was used with known soils to generate simulated receptor filter samples loaded with approximately 0.4 mg of PM10 dust, which is within the range of mass loading on ambient filters. Py-GC/MS at 740 degrees C generated five times more resolvable compounds than were obtained with thermal desorption GC/MS at 315 degrees C. The identified compounds were consistent with literature from Py experiments using larger samples of bulk soils. A subset of 91 organic species out of the 178 identified Py products was used as input to CMB8 software in a demonstration of source apportionment using laboratory-generated mixtures simulating ambient filter samples. The 178 quantified organic species obtained by Py of soil samples is an improvement compared with the 38 organic species obtained by thermal desorption of soils and the four functionally defined organic fractions reported by thermal/ optical reflectance. Significant differences in the concentration of specific species were seen between samples from different sites, both geographically distant and close, using analysis of variance and cluster analysis. This feasibility study showed that Py-GC/MS can generate useful source profile data for receptor modeling and justifies continued method development.  相似文献   

15.
废旧电路板与碳酸钙共热解脱卤的研究   总被引:4,自引:1,他引:3  
采用热重分析仪和石英管式炉热解反应器,分别对以酚醛树脂为基板的废旧电路板和混合碳酸钙后的废旧电路板进行热解实验研究,着重考察了添加碳酸钙后的酚醛树脂基板废旧电路板热解特性及添加量不同对卤素脱除效果的影响。实验结果表明,碳酸钙的加入对废旧电路板的降解行为和热解油的基本组成没有明显的影响,但热解油的各组分含量有所差异;随着热解温度的提高或者CaCO3含量的增多,卤素可以更多地由有机卤向无机卤转变并束缚在固体残渣中,由此得到较好的脱卤效果。当60%PR-WPCBs与40%CaCO3共热解,热解油中的溴化物也减少了7.6% 。在600℃等量CaCO3与PR-WPCBs共热解时生成75.6%无机卤,其中70.62%束缚于固体残渣中,可见达到较好的脱卤效果。  相似文献   

16.
以炼焦煤原煤、尾煤为研究对象,采用微量热重、常量固定床实验装置对其在热解过程中的质量变化和气相产物进行了对比分析。考察了温度、6种催化剂(CaO、MgO、Fe、Ni、NaOH、A1)及其添加比例对炼焦煤尾煤热解制取富氢燃料气的影响。结果表明,尾煤中富集的无机矿物质对热解制取富氢燃料气有促进作用,单位尾煤热解H2产率要比原煤高出1.93%。温度是影响尾煤热解产气的重要参数,热解终温的上升有利于H2产量的提高,随终温800℃升高到950℃H,产量增长了32.59mL/g。在催化热解实验中,除Al和MgO对尾煤热解有抑制作用外,CaO、Fe、Ni及NaOH均对尾煤热解产H2有促进作用,以CaO和Fe效果最为明显。并且不同添加比例的CaO和Fe对热解制取富氢燃料有一定的影响。  相似文献   

17.
An international round robin test on the analysis of carbonaceous aerosols on quartz fiber filters sampled at an urban site was organized by the Vienna University of Technology. Seventeen laboratories participated using nine different thermal and optical methods. For the analysis of total carbon (TC), a good agreement of the values obtained by all laboratories was found (7 and 9% r.s.d.) with only two outliers in the complete data set. In contrast the results of the determination of elemental carbon (EC) in two not pre-extracted samples were highly variable ranging over more than one order of magnitude and the relative standard deviations (r.s.d.) of the means were 36.6 and 45.5%. The laboratories that obtained similar results by using methods which reduce the charring artifact were put together to a new data set in order to approach a “real EC” value. The new data set consisting of the results of 10 laboratories using seven different methods showed 16 and 24% lower averages and r.s.d. of 14 and 24% for the two not pre-extracted samples. Taking the current filters as “equivalents” for urban aerosol samples we conclude that the following methods can be used for the analysis of EC in carbonaceous aerosols: thermal methods with an optical feature to correct for charring during pyrolysis, two-step thermal procedures reducing charring during pyrolysis, the VDI 2465/1 method (removal of OC by solvent extraction and thermodesorption in nitrogen) and the VDI 2465/2 method (combustion of OC and EC at different temperatures) with an additional pre-extraction with a dimethyl formamide (DMF)/toluene mixture. Only thermal methods without any correction for charring during pyrolysis and the VDI 2465/2 method were outside the range of twice the standard deviation of the new data set. For a filter sample pre-extracted with the DMF/toluene mixture the average and r.s.d. from all laboratories (20.7 μgC; 24.4% r.s.d.) was very similar as for the laboratory set reduced to 10 laboratories (20.6 μgC; 19% r.s.d.). Thus DMF pre-extraction appears to improve the performance of the thermal methods without charring during pyrolysis control, e.g. the VDI 2465/2 methods.  相似文献   

18.
Abstract

This study tested the feasibility of using pyrolysis (Py)-gas chromatography (GC)/mass spectrometry (MS) to obtain organic chemical species data suitable for source apportionment modeling of soil-derived coarse particulate matter (PM10) dust on ambient filters. A laboratory resuspension apparatus was used with known soils to generate simulated receptor filter samples loaded with ~0.4 mg of PM10 dust, which is within the range of mass loading on ambient filters. Py-GC/MS at 740 °C generated five times more resolvable compounds than were obtained with thermal desorption GC/MS at 315 °C. The identified compounds were consistent with literature from Py experiments using larger samples of bulk soils. A subset of 91 organic species out of the 178 identified Py products was used as input to CMB8 software in a demonstration of source apportionment using laboratory-generated mixtures simulating ambient filter samples. The 178 quantified organic species obtained by Py of soil samples is an improvement compared with the 38 organic species obtained by thermal desorption of soils and the four functionally defined organic fractions reported by thermal/optical reflectance. Significant differences in the concentration of specific species were seen between samples from different sites, both geographically distant and close, using analysis of variance and cluster analysis. This feasibility study showed that Py-GC/MS can generate useful source profile data for receptor modeling and justifies continued method development.  相似文献   

19.
BACKGROUND AND AIMS: Polychlorinated diphenyl ethers (PCDEs), which are among the members of persistent organic pollutants, and PCDEs have been determined in a number of environmental samples. The main possible sources are the technical production of chlorinated phenols and all processes of incomplete combustion. PCDEs were observed in the fly ash from a municipal waste incinerator (MWI). It was speculated that the condensation of chlorophenols with chlorobenzenes occurred via PCDEs to form polychlorinated dibenzofurans (PCDFs). Nevertheless, PCDEs formation from condensation of chlorophenols with chlorobenzenes has not been confirmed by experimental observation. The objective of this paper is to investigate the formation mechanism of PCDEs from the condensation of chlorophenols with chlorobenzenes. The results are expected to be helpful in understanding the formation of PCDEs and in controlling and abating PCDEs emissions from MWI. METHODS: The pyrolysis of pentachlorophenol (PCP) and/or polychlorobenzenes (PCBz) was carried out in a sealed glass tube. The reaction products were extracted and purified with K2CO3 solution. The samples were concentrated and then cleaned up on an alumina column. GC/MS was used for identification and quantification of reaction products. RESULTS AND DISCUSSION: The results showed that the pyrolysis of hexachlorobenzene (HCB) at 340 degrees C for 6 h led to the formation of decachlorodiphenyl ether (DCDE) (2.41 microg/mg) and octachlorodibenzo-p-dioxins (OCDD) (0.24 micropg/mg), while the pyrolysis of PCP yielded DCDE (13.08 microg/mg) and OCDD (180.13 microg/mg). In addition, the amount of DCDE formation from the pyrolysis of the mixture of PCP and HCB was 4.65 times higher than the total amount of DCDE formation from the pyrolysis of HCB and PCP, respectively. This indicated that PCP and HCB were prone to condensation and formation of DCDE. DCDE was the main congener of PCDEs from condensation of PCP with HCB at 340, 400 and 450 degrees C. A small amount of nonachlorodiphenyl ether (NCDE) was formed by dechlorination reaction at 450 degrees C. The condensation of PCP with 1,2,4,5-tetrachlorobenzene (Cl4Bz) formed 2,2',3,4,4',5,5',6-octachlorodiphenyl ether (OCDE). Small amounts of heptachlorodiphenyl ether (HpCDE) and hexachlorodiphenyl ether (HxCDE) were detected at 450 degrees C. Meanwhile, polychlorinated dibenzo-p-dioxins (PCDDs) and PCDFs were detected from the condensation of PCP and PCBz. CONCLUSIONS: Experimental studies clarified the behavior of the formation of PCDEs from condensation of polychlorophenols and PCBz. The condensation of polychlorophenols with PCBz formed PCDEs through elimination of HCl between polychlorophenols and PCBz molecules. Another pathway of PCDEs formation was elimination of H2O between two polychlorophenol molecules. In addition, dechlorination processes had caused the specific homologous pattern of PCDEs under higher temperatures.  相似文献   

20.
Background There has been an increasing concern about the treatment and disposal of contaminated sediment from dredged river, harbor or estuary due to the accumulated toxic organics such as dioxins and inorganics particularly heavy metals like Cr, Pb, Zn, Cu, Hg and Cd. However, considering the huge amount of materials and financial costs involved, any candidate technology must ultimately result to reusable residual by-products. This can only be made possible if the toxic pollutants are removed or stabilized in the raw sediment and then fed back into the materials cycle. Currently, we are developing a pyrolysis process for the commercial-scale cleanup of dioxins and heavy metal-contaminated river sediment to yield reusable char for various economical applications. In this connection, this paper describes our preliminary investigation into the extent of dioxins and heavy metal volatilization from actual contaminated sediment. The stabilization of certain metallic species particularly Cr ions was studied. Methods Laboratory scale pyrolysis experiments were conducted using a special horizontal lab-scale pyrolyzer. Sediment samples from Shanghai Suzhou Creek and Tagonoura Harbor were pyrolyzed in the reactor under nitrogen gas at 800°C and different retention times of 30, 60 and 90 min. A constant heating rate of 10°C min-1 was employed. The pyrolysis gas was first allowed to pass through a cold trap to condense the tar. Uncondensed gases were then channeled through a column containing an adsorbent (XAD-2 Resin) for dioxins. Heavy metal concentrations in the initial and final sediment residues were analyzed by ICP (Nippon Jarrel-Ash) following their acid and alkali (for Cr6+) digestion. Dioxins content of the pyrolysis char, tar, and exhaust gases in the dioxin adsorbent were also determined. For comparative purpose, thermal treatment under air flow was conducted. Results The data for the removal of heavy metals from Suzhou Creek sediment showed very significant reductions in Pb, Zn and Cr6+ content of the sediment at this condition. Percentage removals were 42.4%, 60.8% and 42.2%, respectively. The disappearance of Cr6+ was due to reduction reactions rather than volatilization since the total Cr content remained almost unchanged. Other heavy metals such as Cu, Fe and Ni showed very minimal reductions. Nonetheless, Toxicity Characteristics Leaching Procedure (TCLP) tests confirmed that these residual heavy metals were rather stable in the pyrolysis char. Reduction of toxic Cr6+ at 42.2% has also been achieved by pyrolysis (with N2) as opposed to the more than 580 % increase in Cr6+ observed during thermal oxidation (with air). Discussion Pyrolysis also remove toxic organics particularly dioxins from the sediment. For the total dioxins, removal percentage of 99.9999% was achieved even at the lowest retention time of 30 min. Almost all polychlorinated dibenzo-p-dioxine (PCDDs) and polychlorinated dibenzo-furans (PCDFs) were removed at any retention time. The TEQs detected from the solid residues were mainly contributed by dioxin-like PCBs, yet these were present in relatively trace quantities. At the shortest retention time of 30 min, only 0.000085 pg-TEQ g-1 of polychlorinated biphenyls (PCBs) was detected in the pyrolysis char. Furthermore, the residual PCBs have very low toxicity ratings and none of the highly toxic PCBs, which were initially present in the sediment such as 3,3',4,4',5-PeCB and 3,3',4,4'5,5'-HxCB, were detected in the char. Results further confirmed that most of the dioxins that were removed were transferred to the gas phase so that volatilization may be considered as the main mechanism for their removal. Conclusion Some heavy metals particularly Pb and Zn can be volatilized under N2 pyrolysis at 800oC. Pyrolysis also prevented the formation of more toxic Cr6+ ions and at the same time resulted to its reduction by around 42.2% contrast to the 580% increase during thermal oxidation. PCDDs and PCDFs have been removed and were not formed in the solid products over the retention time range of 30-90 min at 800°C. Dioxin-like PCBs mostly remained and a retention time of 30 min was found sufficient for its maximum removal. Recommendations and Perspective . With the above results, a temperature of 800oC at a retention time of 30 min is sufficient for the removal of total dioxins and some heavy metals by volatilization. It is however necessary to destroy the dioxins as well as recover heavy metals in the gas phase. Stability of remaining heavy metals in the char also needs to be confirmed by leaching tests. These are the major concerns, which we are currently evaluating to establish the feasibility of our proposed large scale pyrolysis system for sediment treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号