首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate‐change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate‐change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4‐month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long‐term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing‐season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario‐impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate‐change projections significantly depart from the current consensus.  相似文献   

2.
Sustainable management of fisheries is often compromised by management delaying implementation of regulations that reduce harvest, in order to maintain higher catches in the short-term. Decreases or increases in fish population growth rate driven by environmental change, including ecosystem and climate change, affect the harvest that can be taken sustainably. If not acted on rapidly, environmental change could result in unsustainable fishing or missed opportunity for higher catches. Using simulation models of harvested fish populations influenced by environmental change, we explore how long fisheries managers can afford to wait before changing harvest regulations in response to changes in population growth. If environmental change causes population declines, delays greater than five years increase the probability of population collapse. Species with fast and highly variable population growth rates are more susceptible to collapse under delays and should be a priority for revised management where delays occur. Generally, the long-term cost of delay, in terms of lost fishing opportunity, exceeds the short-term benefits of overfishing. Lowering harvest limits and monitoring for environmental change can alleviate the impact of delays; however, these measures may be more costly than reducing delays. We recommend that management systems that allow rapid responses to population growth changes be enacted for fisheries management to adapt to ecosystem and climate change.  相似文献   

3.
Niu S  Sherry RA  Zhou X  Wan S  Luo Y 《Ecology》2010,91(11):3261-3273
Modeling studies have shown that nitrogen (N) strongly regulates ecosystem responses and feedback to climate warming. However, it remains unclear what mechanisms underlie N regulation of ecosystem-climate interactions. To examine N regulation of ecosystem feedback to climate change, we have conducted a warming and clipping experiment since November 1999 in a tallgrass prairie of the Great Plains, USA. Infrared heaters were used to elevate soil temperature by an average of 1.96 degrees C at a depth of 2.5 cm from 2000 to 2008. Yearly biomass clipping mimicked hay or biofuel feedstock harvest. We measured carbon (C) and N concentrations, estimated their content and C:N ratio in plant, root, litter, and soil pools. Warming significantly stimulated C storage in aboveground plant, root, and litter pools by 17%, 38%, and 29%, respectively, averaged over the nine years (all P < 0.05) but did not change soil C content or N content in any pool. Plant C:N ratio and nitrogen use efficiency increased in the warmed plots compared to the control plots, resulting primarily from increased dominance of C4 plants in the community. Clipping significantly decreased C and N storage in plant and litter pools (all P < 0.05) but did not have interactive effects with warming on either C or N pools over the nine years. Our results suggest that increased ecosystem nitrogen use efficiency via a shift in species composition toward C4 dominance rather than plant N uptake is a key mechanism underlying warming stimulation of plant biomass growth.  相似文献   

4.
An important concern of conservation biologists is determining what conditions most limit the number of individuals in endangered populations. Because time is a constraint, narrowing the search for such factors is beneficial. Toward this end we used broad spatial and temporal data, to test the hypothesis that reproductive success (as measured by juvenile-to-adult ratios) of the endangered Attwater's Prairie Chicken ( Tympanuchus cupido attwateri ) was not equal to that of the nonendangered Greater Prairie Chicken ( T. c. pinnatus ). We then tested the hypotheses that mean clutch size, egg hatchability, nesting success, and number of chicks per brood prior to brood breakup for Attwater's Prairie Chicken were not equal to those of the Greater Prairie Chicken. We found that the mean ratio of juveniles to adults among Attwater's Prairie Chicken was less than that of the Greater Prairie Chicken ( p < 0.011), as would be predicted if reproductive success controls proportional changes in prairie-grouse numbers among years. Mean nesting success (32.2%) and number of chicks per brood prior to brood breakup (4.2) of Attwater's Prairie Chicken were both less than those of the Greater Prairie Chicken (49.5 %, p = 0.0425, and 6.0 p = 0.0001, respectively). We suggest that researchers focus on determining what proportion of Attwater's Prairie Chicken broods survive and why Attwater's Prairie Chicken nesting and brood-rearing success are so poor relative to those of the Greater Prairie Chicken.  相似文献   

5.
Abstract: Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual‐ and population‐level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density‐independent and density‐dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density‐dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels.  相似文献   

6.
Abstract:  New wind-energy facilities and their associated power transmission lines and roads are being constructed at a rapid pace in the Great Plains of North America. Nevertheless, little is known about the possible negative effects these anthropogenic features might have on prairie birds, one of the most threatened groups in North America. We examined radiotelemetry tracking locations of Lesser Prairie-Chickens ( Tympanuchus pallidicinctus ) and Greater Prairie-Chickens ( T. cupido ) in two locations in Oklahoma to determine whether these birds avoided or changed movement behavior near power lines and paved highways. We tracked 463 Lesser Prairie-Chickens (15,071 tracking locations) and 216 Greater Prairie-Chickens (5,750 locations) for 7 and 3 years, respectively. Individuals of both species avoided power lines by at least 100 m and Lesser Prairie-Chickens avoided one of the two highways by 100 m. Prairie-chickens crossed power lines less often than expected if birds moved randomly ( p < 0.05) but did not appear to perceive highways as a movement barrier ( p > 0.05). In addition, home ranges of Lesser Prairie-Chickens overlapped the power line less often than would be expected by chance placement of home ranges; this result was supported by kernel-density estimation of home ranges. It is likely that new power lines (and other tall structures such as wind turbines) will lead to avoidance of previously suitable habitat and will serve as barriers to movement. These two factors will likely increase fragmentation in an already fragmented landscape if wind energy development continues in prairie habitats .  相似文献   

7.
Recent development of age-determination techniques for Florida manatees (Trichechus manatus latirostris) has permitted derivation of age-specific data on reproduction and survival of a sample of 1212 carcasses obtained throughout Florida from 1976–1991. Population viability analysis using these data projects a slightly negative growth rate (−0.003) and an unacceptably low probability of persistence (0.44) over 1000 years. The main factors affecting population projections were adult survival and fecundity. A 10% increase in adult mortality would drive the population to extinction over a 1000-year time scale, whereas a 10% decrease in adult mortality would allow slow population growth. A 10% decrease in reproduction would also result in extinction. We conclude that management must focus on retaining and improving the conditions under which manatee demography operates. The major identified agent of mortality is boat-manatee collisions, and rapidly increasing numbers of humans and registered boats portend an increase in manatee mortality. Zoning of manatee-occupied waters for reductions in boating activity and speed is essential to safeguard the manatee population. If boating regulations being implemented by the state of Florida in each of 13 key coastal counties are completed, enforced, and effective, manatees and human recreation could coexist indefinitely. If regulation is unsuccessful, the Florida manatee population is likely to decline slowly toward extinction.  相似文献   

8.
Simulation modeling was used to reconstruct Black-browed Albatross (Diomedea melanophris) population trends. Close approximations to observed data were accomplished by annually varying survival rates, reproductive success, and probabilities of returning to breed given success in previous years. The temporal shift in annual values coincided with the start of longline fishing at South Georgia and potential changes in krill abundance. We used 23 years of demographic data from long-term studies of a breeding colony of this species at Bird Island, South Georgia, to validate our model. When we used annual parameter estimates for survival, reproductive success, and probabilities of returning to breed given success in previous years, our model trajectory closely followed the observed changes in breeding population size over time. Population growth rate was below replacement (lambda < 1) in most years and was most sensitive to changes in adult survival. This supports the recent IUCN uplisting of this species from "Vulnerable" to "Endangered." Comparison of pre-1988 and post-1988 demography (before and after the inception of a longline fishery in the breeding area) reveals a decrease in lambda from 0.963 to 0.910. A life table response experiment (LTRE) showed that this decline in lambda was caused mostly by declines in survival of adults. If 1988-1998 demographic rates are maintained, the model predicts a 98% chance of a population of fewer than 25 pairs within 78 years. For this population to recover to a status under which it could be "delisted," a 10% increase in survival of all age classes would be needed.  相似文献   

9.
Conservation‐reliant species depend on active management, even after surpassing recovery goals, for protection from persistent threats. Required management may include control of another species, habitat maintenance, or artificial recruitment. Sometimes, it can be difficult to determine whether sustained management is required. We used nonspatial stochastic population projection matrix simulation and a spatially explicit population model to estimate the effects of parasitism by a brood parasite, the Brown‐headed Cowbird (Moluthrus ater), on a population of endangered Black‐capped Vireos (Vireo atricapilla). We simulated parasitism as a percentage of breeding vireo pairs experiencing decreased fecundity due to cowbirds. We estimated maximum sustainable parasitism (i.e., highest percentage of parasitized vireo breeding pairs for which population growth is ≥1) with the nonspatial model under multiple scenarios designed to assess sensitivity to assumptions about population growth rate, demographic effects of parasitism, and spatial distribution of parasitism. We then used the spatially explicit model to estimate cumulative probabilities of the population falling below the population recovery target of 1000 breeding pairs for a range of parasitism rates under multiple scenarios. We constructed our models from data on vireos collected on the Fort Hood Military Reservation, Texas (U.S.A.). Estimates of maximum sustainable parasitism rates ranged from 9–12% in scenarios with a low (6%) vireo population growth rate to 49–60% in scenarios with a high (24%) growth rate. Sustained parasitism above 45–85%, depending on the scenario, would likely result in the Fort Hood Vireo population dropping below its recovery goal within the next 25 years. These estimates suggest that vireos, although tolerant of low parasitism rates, are a conservation‐reliant species dependent on cowbird management. Dependencia de Vireo atricapilla, Especie en Peligro, hacia el Manejo Sostenido de Moluthurs ater  相似文献   

10.
Abstract: Captive breeding and reintroduction programs are rarely evaluated, and assessment criteria vary widely. We used the following criteria to evaluate a bighorn sheep ( Ovis canadensis ) augmentation program: (1) survival and recruitment rates in the captive population, (2) survival of released animals, (3) recruitment of released animals, (4) growth rate of the reintroduced or augmented population, and (5) establishment of a viable wild population. Captive bighorn survival and recruitment was high, averaging 0.98 (SD = 0.05) and 71.0% (SD = 19.4), respectively. Annual survival of free-ranging captive-reared bighorn ( n = 73, x = 0.80, SD = 0.11) did not differ (   Z = −0.85, p = 0.40; n = 14) from survival of wild-reared bighorn ( n = 43, x = 0.81, SD = 0.12). Recruitment was unusually low for both captive-reared (  x = 13.7%, SD = 0.24) and wild-reared ewes (  x = 13.7%, SD = 0.20). Although reintroduction did not result in population growth or establishment of a viable population, it helped prevent extirpation of the reinforced deme, preserved metapopulation linkage, and aided habitat preservation. Chronic low recruitment and low adult survivorship precluded achievement of criteria 3–5. Environmental conditions in the release area also appeared to hinder program success. Standard evaluation criteria for ongoing reintroductions allow for informative assessments and facilitate comparisons needed to refine reintroduction science as a recovery tool for threatened or endangered populations.  相似文献   

11.
Obligate brood parasitic birds, such as cowbirds, evade parental care duties by laying their eggs in the nests of other species. Cowbirds are assumed to avoid laying repeatedly in the same nest so as to prevent intrabrood competition between their offspring. However, because searching for host nests requires time and energy, laying more than one egg per nest might be favoured where hosts are large and can readily rear multiple parasites per brood. Such ‘repeat parasitism’ by females would have important consequences for parasite evolution because young parasites would then incur indirect fitness costs from behaving selfishly. We investigated shiny cowbird (Molothrus bonariensis) parasitism of a large host, the chalk-browed mockingbird (Mimus saturninus), in a population where over 70 % of the parasitized mockingbird nests receive multiple cowbird eggs. We assessed egg maternity directly, using cameras at nests to film the laying of individually-marked females. We also supplemented video data with evidence from egg morphology, after confirming that each female lays eggs of a consistent appearance. From 133 eggs laid, we found that less than 5 % were followed by the same female visiting the nest to lay again or to puncture eggs. Multiple eggs in mockingbird nests were instead the result of different females, with up to eight individuals parasitizing a single brood. Thus, while cowbird chicks regularly share mockingbird nests with conspecifics, these are unlikely to be their maternal siblings. Our results are consistent with shiny cowbird females following a one-egg-per-nest rule, even where hosts can rear multiple parasitic young.  相似文献   

12.
Abstract:  Marine reserves have both conservation and fishery benefits. Nevertheless, there are no general criteria about when and where to establish new reserves, how to evaluate their efficacy, and how to conduct adaptive management to achieve conservation goals. We applied a decision-theory framework to optimally allocate conservation resources between improving data on population status and establishing a reserve for species conservation. Our goal was to maximize reserve benefits given the constraints of a population growth rate that would permit sustainability of resources. We illustrate our decision framework with a retrospective analysis of a 7-year time series on abundance of the leopard grouper ( Mycteroperca rosacea ) in the Sea of Cortés, Mexico. We used the lower bound of the distribution of the population growth rate ( λ ) as a decision rule for determining how many years of monitoring are needed to detect reserve effects. We determined the minimum time frame needed to estimate λ based on a stated level of risk tolerance for four sites. As expected, the coefficient of variation for the λ declined with the number of years of data. This increased precision with additional years of data resulted from the high degree of annual variability in the system. Where populations were slow to respond to reserves, more data were needed to detect a positive λ value. For the leopard grouper case study, confidence in the estimate of λ increased with the number of years of data. Our decision framework may be used to identify the minimum number of years of data needed before a management decision about reserve establishment could be made that is reasonably likely to meet its management objectives.  相似文献   

13.
Abstract: Within 19 years the nesting population of leatherback turtles (Dermochelys coriacea) at Parque Nacional Marino Las Baulas declined from 1500 turtles nesting per year to about 100. We analyzed the effects of fishery bycatch and illegal harvesting (poaching) of eggs on this population. We modeled the population response to different levels of egg harvest (90, 75, 50, and 25%) and the effect of eradicating poaching at different times during the population decline. We compared effects of 90% poaching with those of 20% adult mortality because both of these processes were present in the population at Las Baulas. There was a stepwise decline in number of nesting turtles at all levels of egg harvest. Extirpation times for different levels of poaching ranged from 45 to 282 years. The nesting population declined more slowly and survived longer with 20% adult mortality (146 years) than it did with 90% poaching (45 years). Time that elapsed until poaching stopped determined the average population size at which the population stabilized, ranging from 90 to 420 nesting turtles. Our model predicted that saving clutches lost naturally would restore the population when adult mortality rates were low and would contribute more to population recovery when there were short remigration intervals between nesting seasons and a large proportion of natural loss of clutches. Because the model indicated that poaching was the most important cause of the leatherback decline at Las Baulas, protecting nests on the beach and protecting the beach from development are critical for survival of this population. Nevertheless, the model predicted that current high mortality rates of adults will prevent population recovery. Therefore, protection of the beach habitat and nests must be continued and fishery bycatch must be reduced to save this population.  相似文献   

14.
Colonial burrowing herbivores can modify vegetation structure, create belowground refugia, and generate landscape heterogeneity, thereby affecting the distribution and abundance of associated species. Black‐tailed prairie dogs (Cynomys ludovicianus) are such a species, and they may strongly affect the abundance and composition of grassland bird communities. We examined how prairie dog colonies in the North American Great Plains affect bird species and community composition. Areas occupied by prairie dogs, characterized by low percent cover of grass, high percent cover of bare soil, and low vegetation height and density, supported a breeding bird community that differed substantially from surrounding areas that lacked prairie dogs. Bird communities on colony sites had significantly greater densities of large‐bodied carnivores (Burrowing Owls [Athene cunicularia], Mountain Plovers, [Charadrius montanus], and Killdeer [Charadrius vociferus]) and omnivores consisting of Horned Larks (Eremophila alpestris) and McCown's Longspurs (Rhynchophanes mccownii) than bird communities off colony sites. Bird communities off colony sites were dominated by small‐bodied insectivorous sparrows (Ammodramus spp.) and omnivorous Lark Buntings (Calamospiza melanocorys), Vesper Sparrows (Pooecetes gramineus), and Lark Sparrows (Chondestes grammacus). Densities of 3 species of conservation concern and 1 game species were significantly higher on colony sites than off colony sites, and the strength of prairie dog effects was consistent across the northern Great Plains. Vegetation modification by prairie dogs sustains a diverse suite of bird species in these grasslands. Collectively, our findings and those from previous studies show that areas in the North American Great Plains with prairie dog colonies support higher densities of at least 9 vertebrate species than sites without colonies. Prairie dogs affect habitat for these species through multiple pathways, including creation of belowground refugia, supply of prey for specialized predators, modification of vegetation structure within colonies, and increased landscape heterogeneity. Asociaciones de Comunidades de Aves de Pastizales con Perros de la Pradera en la Gran Llanura de Norte América  相似文献   

15.
Summary Observations were made of ten green (red-billed) woodhoopoe Phoeniculus purpureus flocks during the breeding season in order to quantify the relationship between flock size and the amount of food delivered to chicks. The study period was kept short specifically to minimize the effects of environmental stochasticity. Neither woodhoopoe feeding visit rates nor the total amount of food brought to chicks increased with flock size. Although nonbreeders did not increase the net rate of food provisioning to chicks, they reduced parental input in chick rearing, and hence energy expenditure by the breeding pair. However, over an 8-year study period, which includes data for 144 flock years, this did not result in increased breeding frequency or enhanced survival of breeders. There is thus no evidence that helpers' feeding contributions to young per se influence the indirect fitness of helpers.  相似文献   

16.
Competition, resources, and vegetation during 10 years in native grassland   总被引:1,自引:0,他引:1  
Wilson SD 《Ecology》2007,88(12):2951-2958
A 10-year experiment tested for variation in competition intensity over time in a natural grassland at the northern edge of the Great Plains. Growing-season precipitation varied fivefold during the study. All ecosystem-level variables varied significantly among years, and most covaried in expected ways. The covers of all common grasses possessing the C3 photosynthetic pathway varied significantly among years; in contrast, all common species with traits associated with drought tolerance (a C4 grass, a lichen, a spikemoss, and a subshrub) did not vary. Annual transplant experiments measured the competitive effects of neighbors on the growth of individuals of the native grass Bouteloua gracilis. A significant interaction between year and competition showed that competition intensity varied among years. The size of this effect, however, was small (eta2 = 0.074) relative to the size of the direct effect of competition (eta2 = 0.20) or the year in which the experiment was conducted (eta2 = 0.51). Further, competition intensity was not significantly related to any variable describing standing crop or resources, or species richness. Species richness was highest in years with high precipitation, standing crop, and individual growth, due to the recruitment of rare species that were absent from dry years. In summary, variation in competition intensity was statistically significant but had small effects relative to the direct effects of climate.  相似文献   

17.
Summary The age of nestlings was made even in 12 nests of cattle egrets (Bubulcus ibis) by exchanging young chicks or eggs in a breeding colory in Japan. The growth of chicks in such synchronously hatching broods (SHBs) grew almost as fast as first-hatched chicks in 38 control (asynchronously hatching) broods (AHBs). Four last-hatched chicks in AHBs but no chicks in SHBs died of starvation. The frequency of parental nest-visits with food, that of begging food by chicks, and food mass eaten by chicks were greater in SHBs than in AHBs during the first half of the nestling period and similar thereafter. Dominance rank within each SHB was formed through ritualistic fights among siblings. It was correlated with neither growth rates nor winning ratios in food contests, but in some SHBs the subordinate chicks were attacked more frequently by dominant siblings during food contests than in AHBs. The most subordinate chick in one SHB died as a direct result of such attacks. Sibling aggressions were more frequent in SHBs than in AHBs.  相似文献   

18.
Adult magpies Pica pica provide parasitic great spotted cuckoo Clamator glandarius nestlings with a diet very similar to that fed to their own chicks. In both naturally and experimentally parasitized nests, great spotted cuckoo chicks were fed at a higher rate than magpie chicks in the same nest. This preferential allocation of food by magpie parents to great spotted cuckoo chicks is consistent with the supernormal stimulus hypothesis, because this result implies that cuckoo chicks provide stronger stimuli for parental care than host chicks. Great spotted cuckoo chicks receive most of the food brought to the nest by the foster parents, because they exploit a series of stimuli which jointly (or sometimes individually) operate as a supernormal stimulus. This hypothesis predicts that if any stimulus is masked, the efficiency of the cuckoo in eliciting parental care will decrease. Here, we analyze experimentally the effects of two of these stimuli, preferential feeding of large nestlings and of nestlings with conspicuous palatal papillae. Firstly, when we experimentally introduced one medium-sized (7–9 days) cuckoo chick into an unparasitized magpie nest where the largest magpie chick was 12–15 days old, the cuckoo did not receive significantly more food than the average or the largest magpie chick. Secondly, when unparasitized nests were experimentally parasitized with a cuckoo chick that had its gape painted to mimic that of magpie chicks, the parasitic cuckoo received less food than the average magpie chick.  相似文献   

19.
Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact of future climate change. Using a unique, long-term data set from eastern Idaho, USA, we parameterized integral projection models (IPMs) for Pseudoroegneria spicata, Hesperostipa comata, and Artemisia tripartita to identify the demographic rates and climate variables most important for population growth. We described survival, growth, and recruitment as a function of genet size using mixed-effect regression models that incorporated climate variables. Elasticites for the survival + growth portion of the kernel were larger than the recruitment portion for all three species, with survival + growth accounting for 87-95% of the total elasticity. The genet sizes with the highest elasticity values in each species were very close to the genet size threshold where survival approached 100%. We found strong effects of climate on the population growth rate of two of our three species. In H. comata, a 1% decrease in previous year's precipitation would lead to a 0.6% decrease in population growth. In A. tripartita, a 1% increase in summer temperature would result in a 1.3% increase in population growth. In both H. comata and A. tripartita, climate influenced population growth by affecting genet growth more than survival or recruitment. Late-winter snow was the most important climate variable for P. spicata, but its effect on population growth was smaller than the climate effects we found in H. comata or A. tripartita. For all three species, demographic responses lagged climate by at least one year. Our analysis indicates that understanding climate effects on genet growth may be crucial for anticipating future changes in the structure and function of sagebrush steppe vegetation.  相似文献   

20.
Soil organic matter (SOM) often increases when agricultural fields are converted to perennial vegetation, yet decadal scale rates and the mechanisms that underlie SOM accumulation are not clear. We measured SOM accumulation and changes in soil properties on a replicated chronosequence of former agricultural fields in the midwestern United States that spanned 40 years after perennial-grassland establishment. Over this time period, soil organic carbon (SOC) in the top 10 cm of soil accumulated at a constant rate of 62.0 g x m(-2) x yr(-1), regardless of whether the vegetation type was dominated by C3 or C4 grasses. At this rate, SOC contents will be equivalent to unplowed native prairie sites within 55-75 years after cultivation ceased. Both labile (short turnover time) and recalcitrant (long turnover time) carbon pools increased linearly for 40 years, with recalcitrant pools increasing more rapidly than expected. This result was consistent across several different methods of measuring labile SOC. A model that investigates the mechanisms of SOM formation suggests that rapid formation of stable carbon resulted from biochemically resistant microbial products and plant material. Former agricultural soils of the Great Plains may function as carbon sinks for less than a century, although much of the carbon stored is stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号