首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 115 毫秒
1.
运用光谱吸收与三维荧光-平行因子分析法(EEMs-PARAFAC)分析了兴凯湖有色可溶性有机物(CDOM)吸收光谱、荧光光谱特征以及荧光组分与主要水质参数的相关性,以探究兴凯湖CDOM来源组成特征.结果表明:平行因子分析法解析CDOM三维荧光图谱,得到陆源类腐殖质C1、微生物作用类腐殖质C2、类酪氨酸C3和类色氨酸C4.兴凯湖中陆源类腐殖质C1能较好反演DOC、TN浓度变化,且在富营养化更强的小兴凯湖中反演效果更好.吸收系数a254、荧光峰积分比值IC:IT、光谱斜率S275-295、DOC与C1-C2、C4在兴凯湖中线性拟合程度均较好,与C1的相关性最好,这意味着陆源类腐殖质是兴凯湖CDOM库的主要贡献者,入湖河流输入是兴凯湖CDOM的重要来源之一.小兴凯湖DOC、a254均极显著高于大兴凯湖,说明小兴凯湖的CDOM丰度要高于大兴凯湖.小兴凯湖CDOM的IC:IT、C1-C2和C4的值均极显著大于大兴凯湖(P<0.001),小兴凯湖S275-295与光谱斜率比值SR均极显著小于大兴凯湖,小兴凯湖PC1得分均值显著高于大兴凯湖品,意味着相较于大兴凯湖而言,小兴凯湖CDOM陆源输入信号更强烈,腐殖质化程度更高,亦即河流输入、农业面源污染导致小兴凯湖CDOM腐殖质化程度升高,且这一部分CDOM分子量较大,应加强兴凯湖流域中生态渔业、生态农业、生态旅游、农田退水等河流污染源排放的控制管理.  相似文献   

2.
青海湖是我国最大的湖泊,该流域生态系统健康对维系青藏高原生态安全具有重要意义.关于我国青藏高原区内大型湖泊的有色可溶性有机物(CDOM)组成与来源研究甚少,对青海湖流域开展CDOM的来源及特征研究对该湖水质保护及填补空白区的研究具有重要意义.通过两次青海湖流域采样并结合三维荧光光谱-平行因子分析法(EEMs-PARAF...  相似文献   

3.
周蕾  周永强  张运林  朱广伟 《环境科学》2021,42(8):3709-3718
天目湖作为重要集中式饮用水源地,水体水质变化会影响其生态系统服务功能.有色可溶性有机物(CDOM)是溶解性有机物的重要组成部分,其来源与组成直接影响水处理工艺与出水品质,因而研究天目湖CDOM来源及时空分异规律对其水质供应安全及生态系统功能维护有着重要的作用.基于2017年逐月野外采样数据,运用平行因子分析法(PARA...  相似文献   

4.
城市不同类型水体有色可溶性有机物来源组成特征   总被引:1,自引:1,他引:1       下载免费PDF全文
过去几十年里,我国飞速的工业活动和城市化进程对城市地表水体生态系统产生巨大影响,地表水体水质变化直接影响城市居民用水安全、城市景观维护及城市热点区域碳循环过程.通过2020年6月采集长春市各类水体(城市河流、公园湖泊及水库)共50个样品,结合光谱吸收及三维荧光光谱-平行因子分析法(EEMs-PARAFAC)分析了各类水...  相似文献   

5.
有色可溶性有机物(Chromophoric dissolved organic matter,CDOM)是水生生态系统的重要组成部分,在生物地球化学循环过程中起着重要的作用.本研究基于2021年4月鄱阳湖南矶湿地国家级自然保护区内3个碟形湖(战备湖、白沙湖和东湖)28个采样点的水样和实测水质参数数据,运用紫外-可见吸收...  相似文献   

6.
鄱阳湖水力连通特征季节差异显著,研究不同水文情景下湖泊调蓄对有色可溶性有机物(CDOM)来源组成、生物可利用性和碳收支平衡的影响对揭示通江湖泊碳循环、水体有机物迁移转化和水资源管理具有重要意义.通过平行因子分析法对鄱阳湖CDOM三维荧光光谱解析得到3个荧光组分,分别为类腐殖质(C1)、类色氨酸(C2)和类酪氨酸(C3)...  相似文献   

7.
鄱阳湖和洞庭湖作为我国面积最大的两个通江湖泊,其湖体水质变化对长江干流水质以及湖区周围居民用水安全至关重要.通过三维荧光-平行因子分析得到4个荧光组分,研究两个湖泊的有色可溶性有机物(CDOM)光谱组成在丰、平和枯这3种水文情景下的变化规律,试图揭示鄱阳湖和洞庭湖CDOM来源及组成对不同丰枯情景的响应机制.结果表明:不同水文情景对鄱阳湖CDOM水质参数影响更为显著,CDOM吸收系数a(254)和溶解性有机碳(DOC)浓度表现为丰水期>平水期>枯水期(t-test,P<0.01),CDOM光谱吸收斜率S275-295表现为枯水期>平水期>丰水期(t-test,P<0.01),洞庭湖a(254)在不同水文情景下差异不显著,比紫外吸收系数SUVA254最大值出现在平水期.平行因子分析法解析三维荧光光谱得到4个荧光组分,枯水期两湖CDOM类蛋白组分贡献率较大,平水期类蛋白组分及类腐殖酸组分贡献率大致相当,丰水期两个湖泊类腐殖酸贡献率占主要部分.在空间分布上,枯水期鄱阳湖4个组分的荧光强度在上游南部湖区偏小,北部偏大...  相似文献   

8.
近几十年来,我国东部平原和丘陵区城市化快速发展,大量的工农业废水和生活污水被排入湖库,直接影响湖库水质和水生生态系统安全.作为特大及大中型城市集中型供水水源地,湖库有色可溶性有机物(CDOM)来源组成极大程度影响着供水安全和城市居民生命健康.通过2021年4月采集长潭水库(11个)、太湖(25个)、洪泽湖(18个)和高...  相似文献   

9.
石玉  周永强  张运林  姚晓龙  黄昌春 《环境科学》2018,39(11):4915-4924
有色可溶性有机物(CDOM)是溶解性有机物中能强烈吸收紫外辐射及蓝光的那部分有机物,并在碳、氮、磷等生源要素生物地球化学循环中起着重要的作用.开展富营养化湖泊CDOM来源、组成结构和空间变化趋势的相关研究,有利于更好地揭示湖泊生源要素循环机制,服务于蓝藻水华控制和湖泊水质改善.本文基于对不同水文情景下太湖和周边连通的51条河流CDOM光谱吸收及三维荧光光谱测定与分析,揭示太湖CDOM光谱组成对不同水文情景的响应机制.结果表明,丰水期溶解有机碳浓度均值(8. 11±1. 26) mg·L~(-1),显著大于枯水期均值(3. 53±1. 19) mg·L~(-1)(t-test,P 0. 01),而丰水期CDOM吸收光谱斜率S_(275~295)均值(19. 09±1. 81)μm~(-1),显著小于枯水期的(20. 89±1. 90)μm~(-1)(t-test,P 0. 001).平行因子分析法对CDOM荧光图谱进行解析得到3个组分,且各组分受到上游来水量的影响较大,丰水期陆源类腐殖酸的荧光强度及占总荧光强度比重较枯水期显著增大.叶绿素a与化学需氧量与陆源腐殖质和类色氨酸均呈显著正相关(P 0. 01),这表明陆源生活污水及藻死亡降解产生的CDOM可能是太湖CDOM库的重要潜在来源.溶解氧浓度与3种荧光组成均呈现显著负相关(P 0. 01),说明CDOM不同组分均为微生物活动的重要基质.本研究结果还发现溶解性有机碳浓度与陆源类腐殖酸组分荧光强度呈极显著线性正相关(r~2=0. 58,P 0. 001),表明太湖溶解性有机碳主要以外源输入为主.  相似文献   

10.
太湖梅梁湾有色可溶性有机物的光化学降解   总被引:9,自引:0,他引:9  
经0.22μm孔径过滤的太湖梅梁湾水样在UV-B辐射的照射下,有色可溶性有机物(CDOM)吸收和荧光强度明显下降,且与UV-B光源距离、辐射时间及辐射剂量呈正相关关系.拟合结果表明,CDOM吸收系数和荧光值的下降随时间符合一阶动力学方程,距光源5,15,25,35,45cm处时,CDOM吸收系数[a(280)]光化学降解的一阶动力学常数分别为0.0156,0.0116,0.0060,0.0051,0.0029;对应的荧光值Fn(355)的一阶动力学常数分别为0.0256,0.0198,0.0141,0.0102,0.0055.CDOM光化学降解过程中吸收系数与定标后的荧光值存在显著的正相关.实验结果用于野外情况可以推导出太湖表层水体中CDOM在夏季也会发生明显的光化学降解.  相似文献   

11.

采用紫外-可见吸收光谱、三维荧光光谱,结合平行因子分析、主成分分析等方法,分析了白洋淀3条入淀河流(府河、孝义河、白沟引河)中发色团溶解有机物(CDOM)的光谱特征,阐释了CDOM组成、来源及对水质的影响机制。结果发现:河流CDOM平均浓度顺序为府河>孝义河>白沟引河,其中,府河CDOM的芳香性与分子量高于其他河流,白沟引河腐殖化程度高于其他河流,孝义河CDOM中内源性物质占比高于其他河流;3条河流均检出类腐殖质组分C1、C2、C3和类蛋白质组分C4,其中C1、C2、C3来源相近,且与C4异源;3条河流各组分最大荧光强度和总荧光强度的沿程变化表明,府河CDOM为点源、面源混合来源,孝义河CDOM以点源输入为主,白沟引河CDOM来自水源本身。

  相似文献   

12.
利用三维荧光光谱平行因子分析(EEMs-PARAFAC)技术,对我国亚热带地区闽江、木兰溪、九龙江河口滨海陆基养虾塘水体的有色溶解性有机质(CDOM)进行了组分及来源分析.研究表明从养虾塘水体CDOM荧光光谱中解析出4个有效PARAFAC荧光组分,包括2种类蛋白质物质和2种类腐殖酸物质,其中类蛋白质组分是河口陆基养虾塘水体中CDOM的主要组成部分.水体的荧光指数FI和自生源指标BIX表明河口区滨海陆基养虾塘水体中CDOM的强自生来源贡献.而腐殖化指标HIX表明养殖塘水体具有弱腐殖化特征.类蛋白质组分与类腐殖质组分之间可能具有相同的来源属性和地化行为,盐度与CDOM呈现极显著负相关,而DOC与CDOM中类腐殖质组分(C2、C3)呈现显著正相关.本研究为进一步揭示养虾塘水体CDOM的光化学性质提供了科学依据.  相似文献   

13.
有色可溶性有机物(CDOM)的生物可利用性直接反映其生物可降解潜力,影响水体中污染物质的迁移转化和水质优劣状况.本研究运用三维荧光光谱-平行因子分析法(EEMs-PARAFAC)结合室内微生物培养实验,分析了高邮湖、南四湖和东平湖CDOM光谱组成和荧光组分的生物可利用性特征,并进一步阐述其对丰水和枯水两种水文情景的响应.结果表明:①运用EEMs-PARAFAC方法解析出4种荧光组分,微生物作用类腐殖酸C1和陆源类腐殖酸C4,类色氨酸C2和类酪氨酸C3.②3个湖泊丰水期吸收系数差值Δa(254)(培养前-培养后)均为正值,而枯水期Δa(254)部分为负值,这意味着CDOM生物可利用性对季节的响应存在较大差异.③不同水文情境下,南四湖和东平湖类腐殖酸组分%ΔC1、%ΔC4均为负值,南四湖丰、枯水期和东平湖丰水期类蛋白组分ΔC2~ΔC3为正值(t-test,P<0.001,P=0.005).而丰水期高邮湖类蛋白组分ΔC2~ΔC3也为正值(t-test,P=0.008,P=0.005),这意味着不稳定类蛋白组分更容易被微生物矿化,可能生成更稳定的类腐殖酸. 3个湖泊腐殖化指数HIX、荧光...  相似文献   

14.
巢湖二氧化碳排放特征及其潜在影响因素   总被引:1,自引:0,他引:1  
为探讨浅水湖泊CO2排放的时空格局及与CDOM来源组成潜在关联机制,于1月(枯水期)、4月(平水期)、7月(丰水期)不同水文情景下富营养浅水巢湖进行野外观测,采用扩散系数—顶空瓶法观测表层水体CO2浓度(cCO2)和通量(FCO2),并探讨CO2排放的潜在驱动因素,尤其是对CDOM来源组成的响应机制.结果表明,巢湖全湖...  相似文献   

15.
运用三维荧光光谱(excitation-emission matrices,EEMs)与平行因子分析模型(parallel factor analysis,PARAFAC)技术手段对南水北调东线枢纽湖泊洪泽湖、骆马湖两个水体中CDOM的来源组成特征进行分析.结果表明:①解析出两湖泊均得到3个荧光组分,陆源类腐殖质C1、类色氨酸C2和类酪氨酸C3.②两湖泊3种组分荧光强度在入湖河口附近明显高于其他水域,且丰水季节3种组分荧光强度均显著大于枯水季节(t-test,P 0. 01),其中陆源类腐殖质C1的荧光强度在丰水期最大.表明两湖水体CDOM来源与组成受上游水系来水量和水文过程的影响较大,尤其是陆源类腐殖质浓度的高低.③相关性分析得出,陆源类腐殖质C1与DOC浓度、吸收系数a(254)有极显著相关性(r~2=0. 60,P 0. 01; r~2=0. 88,P 0. 01),相关性高于其余两种组分,表明陆源类腐殖质为CDOM的主要来源.另外,陆源类腐殖质C1与SUVA、S275-295、IC∶IT具有很好的相关性(r~2=0. 49,P 0. 01; r~2=0. 61,P 0. 01; r~2=0. 93,P 0. 01),进一步说明了两湖泊CDOM来源与组成受陆源影响较大.洪泽湖、骆马湖CDOM来源与组成受到不同水文情景和入湖河流的影响,应加强丰水期对入湖河流的水质管理.  相似文献   

16.
郭卫东  黄建平  洪华生  徐静  邓荀 《环境科学》2010,31(6):1419-1427
利用激发发射矩阵荧光光谱(EEMs)并结合平行因子分析(PARAFAC),研究了九龙江口有色溶解有机物(CDOM)的荧光组分特征及其河口动力学行为,并探讨其作为河口区有机污染示踪指标的可行性.利用PARAFAC模型识别出九龙江口CDOM由2类4个荧光组分组成,即类腐殖质荧光组分C1(240,310/382nm)、C2(230,250,340/422nm)、C4(260,390/482nm)及类蛋白质荧光组分C3(225,275/342nm).模型结果表明,传统寻峰法指认的短波类腐殖质A峰区域(240~290/380~480nm)实际上并非一个单独的荧光峰,而是若干荧光组分的组合,并且它与传统上指认的长波区海源类腐殖质M峰、陆源类腐殖质C峰之间存在内在联系.包含M峰的C1组分在河口区随盐度增加呈稀释降低趋势,表明M峰并不能被认为是海洋来源的专有特征峰.类腐殖质组分C1和C2在盐度6的河口最大浑浊带区表现出一定的添加行为,之后在河口混合过程中呈保守行为,而类腐殖质荧光组分C4则在整个河口混合过程中都呈保守行为.类蛋白质荧光组分C3在河口混合过程中呈不保守行为,并且在总荧光组分中所占比例在高盐度区呈上升趋势.EEM-PARAFAC不仅可示踪九龙江不同支流DOM的特征,并且还可很好地示踪九龙江口的有机污染程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号