首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
王莹  智协飞  白永清  董甫  张玲 《环境科学》2022,43(8):3913-3922
作为一个新的区域性霾污染中心,长江中游地区地理位置特殊,是我国中东部地区大气污染物区域传输的重要枢纽,天气环流对该区域不同传输和累积型PM2.5重污染的形成机制还不甚了解.利用T-mode斜交旋转主成分分析法(PCT),对2015~2019年采暖季长江中游地区74 d PM2.5重污染事件进行天气环流分型,得到:PCT1高压底部传输型(天数:41 d,占比:55.4%)、PCT2低压辐合累积型(天数:12 d,占比:16.2%)、PCT3高压静稳累积型(天数:11 d,占比:14.9%)和PCT4高压后部传输型(天数:10 d,占比:13.5%)这4种主要的大气环流类型.区域传输型污染(PCT1和PCT4)占比高达69%,是长江中游地区PM2.5重污染发生的主导因素,突显了地域特殊性.其中,PCT1是最主要的环流型,冷锋南侵伴随强偏北风驱动上游地区污染物快速传输,使得PM2.5浓度暴发式增长.境内传输通道城市襄阳、荆门和荆州PM2.5传输过程具有12 h滞后特征,其PM2.5影响源区主要分布在上游的河南中北部、山东西部和华北大部分地区.PCT4传输型受低层偏东风输送影响,污染上升速率也相对较快.PCT2和PCT3为静稳天气环流型,地面风速较小,低层水平辐合和下沉运动有利本地PM2.5重污染累积,污染上升速率和持续时间都相对传输型更长.  相似文献   

2.
2013年12月我国中东部地区发生多场大范围高强度的颗粒物污染. 期间,本研究采用在线连续观测手段测量了上海市城区大气中气态污染物、颗粒物的质量浓度、细颗粒物的化学组分等,获得了浮尘污染、灰霾污染、雾霾污染、长距离传输的过境污染过程中颗粒物的污染特征变化. 观测结果显示,雾霾污染最为严重,PM10和PM2.5日均最大浓度分别达到536 μg ·m-3和411 μg ·m-3,PM2.5/PM10高达76.7%,高湿度加强了大气颗粒物中NO3-、SO42-、NH4+等二次组分的生成. 浮尘污染中PM2.5的Ca2+浓度在所有污染过程中最高,且PM2.5中一次组分比重明显上升. 长距离传输的过境污染中PM2.5的SO42-浓度最高,且增长速度很快. 同时本研究还采用Hysplit反向轨迹结合聚类分析方法,得到了不同污染过程中到达上海的主要气团轨迹,并结合上海城区在线观测的PM2.5及其化学组分浓度数据,探讨了不同气团下PM2.5组分特征差异和不同污染过程的大致来源. 结果表明,观测期间上海的气团轨迹可以聚类为六类. 其中,移动速度快的cluster6出现时,上海市不易出现颗粒物污染; 始于蒙古的cluster2和cluster3导致上海出现沙尘污染,该气团下PM2.5/PM10的比例都较低,且PM2.5中Ca2+浓度较高. 移动缓慢的cluster5和cluster4有利于污染物的二次生成,静稳天气同时加剧了污染物的累积,加上他们经海上夹带水汽传输至上海,这些不利条件是导致上海出现严重污染的关键因素.  相似文献   

3.
利用HYSPLIT模式计算了2016—2018年西宁市逐日72 h气团后向轨迹,采用聚类分析方法,结合同期颗粒物PM10和PM2.5质量浓度数据,分析逐年和3年平均西宁市颗粒物输送特征及差异,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)对影响西宁市PM10和PM2.5质量浓度的污染潜在源区及不同潜在源区贡献进行了分析.结果表明,2016—2018年,西宁市颗粒物最主要输送路径源自青海北部的聚类2、甘肃中部的聚类6和甘肃东部的聚类8,占同期总轨迹比例分别为28.1%、27.4%和27.5%;3年平均则源自青海北经青海东折回西宁的聚类2,占比45.3%.最主要输送路径对应颗粒物质量浓度最低,输送距离较短、垂直高度较低、气团移速较慢;影响气团由西北向偏东转变,3年平均则以西北气团为主.2018年源自甘肃经青海东至西宁的短距离输送处于突出地位,所含轨迹占总轨迹的比例高达49.6%.PM10和PM2.5主要输送路径和污染路径由较长距离向较短距离过渡,较长距离输送路径出现比例逐年较小.PM2.5/PM10小于0.3时,主要输送路径与PM10污染轨迹有很好的对应关系;PM2.5/PM10大于0.6时,主要输送路径与PM2.5污染轨迹有较好的对应关系.PSCF和CWT分析发现,影响西宁市颗粒物质量浓度的主要污染潜在源区分布在新疆南部和青海北部,对PM10质量浓度贡献大于100 μg·m-3,对PM2.5质量浓度贡献大于45 μg·m-3.潜在源区分布年变化差异明显,2016年最广,2018年最小.印度北部主要贡献源区虽分布范围逐年减小,但在2017年局部贡献增大,对PM10贡献超250 μg·m-3,对PM2.5贡献超60 μg·m-3.主要贡献区周边区域及西宁至兰州一带为中等贡献源区,对PM10贡献为50~100 μg·m-3,对PM2.5贡献为15~45 μg·m-3.  相似文献   

4.
2013-2015年上海市霾污染事件潜在源区贡献分析   总被引:6,自引:0,他引:6  
周沙  刘宁  刘朝顺 《环境科学学报》2017,37(5):1835-1842
统计分析2013-2015年上海市每个月不同空气质量等级天数比重,根据HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory)后向轨迹模型对3年内的12月份影响上海地区的污染气团进行了综合聚类分析和逐年聚类分析.在综合12次严重霾事件的后向轨迹基础上,结合上海实时公布的PM2.5小时浓度资料,对潜在源贡献因子PSCF(Potential Source Contribution Function)和浓度权重轨迹CWT(Concentration-weighted Trajectory)进行分析与比较,研究重霾期间影响上海PM2.5质量浓度的潜在源区及不同源区对PM2.5质量浓度的贡献差异.结果显示,上海市3年期间12月份霾颗粒物外来源主要输送渠道为西北路径和北方路径,源自于西北方向的气团比重占总气团的50.4%,北方向的气团几乎都经过海洋后进入上海地区.影响上海地区PM2.5质量浓度的潜在源区主要分布在安徽、江苏和山东地区,此外江西北部、浙江北部、河北南部及山西少部分地区也对重霾事件中的污染物颗粒有一定程度的贡献.  相似文献   

5.
为研究沈阳市冬季PM2.5和水溶性离子的污染特征,使用URG-9000D在线监测系统于2018年冬季对大气颗粒物和气体组分进行连续采样.结果表明,采样期间沈阳市PM2.5的平均质量浓度为80.67 μg·m-3,总水溶性离子质量浓度变化范围为2.68~132.79 μg·m-3.与清洁天相比,污染天NO3-、SO42-和NH4+(SNA)占比明显增加,占到PM2.5的43.7%.静稳天气时SO2短时间内的迅速累积使得沈阳市冬季大气PM2.5有暴发性增长现象.Pearson相关性分析可知,SNA、Cl-与PM2.5之间的相关系数均达0.78以上,表明沈阳市冬季PM2.5的主要贡献组分为SNA和Cl-.PMF源解析表明沈阳市冬季污染物来源主要包括二次反应源、燃煤和生物质燃烧源以及扬尘源.  相似文献   

6.
为了弄清蒙古气旋外围出现的霾和沙尘复合污染特征及其形成的关键气象条件,本研究利用多种遥感设备(增强型云高仪、风廓线雷达和微波辐射计等)垂直加密观测数据,结合大气主要污染物(PM10、PM2.5、SO2、NO2)监测数据、加密自动气象站观测数据,以及常规地面和高空气象观测数据、NCEP再分析数据等,分析发生在北京春季的2次霾和沙尘重污染过程.结果表明,2017年5月4—5日为一次PM10和PM2.5混合污染过程,与上游地区强烈发展的蒙古气旋后部风沙区的输送有关.上游地区因受中-低空西来槽影响上升气流加强,使沙尘细颗粒物(粒径≤10 μm)悬浮于空中,由中-低空偏西风输送至下游地区,被北京及附近的弱下沉气流带至地面造成严重的PM10、PM2.5混合污染.其中,地面偏西风对上游地区的PM10、PM2.5的水平输送作用明显;2018年3月27—28日凌晨是受蒙古气旋底部低压区辐合作用和偏南气流输送作用形成的积累型霾(PM2.5)污染.28日凌晨2:00开始蒙古气旋后部沙尘区随东-西向冷高压南压而向南扩散.随后冷高压不断东移形成回流偏东风,偏东风使北京及西北部地区的低层大气产生辐合上升运动,导致本地尘土扬起,造成PM2.5重污染和PM10极严重污染;浮尘天气引发的大气污染具有突发性特征,且持续时间较长.边界层高度低、低层大气存在逆温层(或等温层)并长时间维持是霾和沙尘复合污染形成和持续的重要条件.霾和沙尘复合重污染的形成是人为污染物、沙尘细颗粒物水平和垂直输送,以及大气层结稳定共同作用的结果.  相似文献   

7.
利用耦合了污染源在线追踪模块的化学传输模式NAQPMS (Nested Air Quality Prediction Model System),结合地面细颗粒物(PM2.5)的小时观测数据,模拟了2014年1、4、7、10月4个月份武汉地区PM2.5浓度时空分布特征,量化了本地、武汉城市圈及远距离地区对武汉PM2.5浓度贡献.研究发现,2014年武汉市PM2.5年均浓度为85.3 μg·m-3,污染天(PM2.5日均值≥75 μg·m-3)占全年总天数的47.9%.细颗粒物的月均值呈现出季节性特征,即冬季污染最为严峻,1月均值为199.1 μg·m-3,PM2.5浓度超标持续一整月;夏季空气质量最好,春秋介于两者之间.模拟的PM2.5平均浓度在空间上大致呈现"城区高,郊区低"的分布态势.污染物区域来源解析发现,武汉市本地排放源贡献在1月最低,为34.1%,表明外来源贡献对长期灰霾的形成起决定性作用.7月本地源影响最显著(65.7%),和毗邻城市源(23.1%)一起成为夏季污染物的主要来源.4月和10月本地排放贡献比分别为49.1%和42.1%.4个月份,武汉城市圈对该市PM2.5浓度的贡献差异不大,范围在20.8%~24.1%.受大尺度天气系统的影响,远距离传输贡献率趋势与本地来源相反,占10.6%~35.3%.研究结果表明污染气团跨界输送对武汉不同季节PM2.5浓度有重要贡献.在冬季大范围污染背景下,污染物区域大范围协同控制才能有效减缓武汉PM2.5污染问题;而夏季对本地及近周边城市的减排措施可以有效改善武汉的空气质量.  相似文献   

8.
2015年北京市两次红色预警期间PM2.5浓度特征   总被引:2,自引:1,他引:2  
利用北京市及周边地区大气污染物监测数据,综合分析了2015年北京市两次空气重污染红色预警期间PM2.5浓度变化特征并初步评估了减排措施对PM2.5浓度的影响.结果表明:第1次红色预警期间,北京市PM2.5平均最高小时浓度出现在12月9日19:00,为282μg·m-3,单站最高小时值出现在京东南市界永乐店站,浓度达496μg·m-3.第2次红色预警期间,PM2.5全市平均最高小时浓度出现在12月22日20:00,为421μg·m-3;单站最高小时值出现在京西南市界琉璃河站,浓度达831μg·m-3.两次红色预警累积持续时间均呈现出南部站 > 城区站 > 北部站的特征,且第2次红色预警期间PM2.5浓度南北差异明显大于第1次,PM2.5平均浓度在150μg·m-3以上的面积明显大于第1次,第2次红色预警期间重污染面积可达总面积的93%.两次预警期间气象条件均不利于污染物的扩散,均存在不同程度的二次转化和区域输送现象,极端气象条件是重污染形成的外因,区域污染物排放量大才是导致重污染形成的内因.初步评估结果显示红色预警应急措施实施后,北京市PM2.5环境浓度下降约20%~25%,减排效果显著.  相似文献   

9.
利用多旋翼无人机于2021年7月30—31日对塔克拉玛干沙漠的塔中(飞行高度0~2000 m)、民丰地区(飞行高度0~1000 m)不同粒径 颗粒物浓度、气温、相对湿度和风速进行垂直观测,结合多地面站点、再分析资料、后向轨迹模型和卫星遥感数据,对沙尘污染过程中的影响 因素、颗粒物垂直分布特征及污染成因进行了分析.结果表明:①近地面低气温、高相对湿度、高风速的气象条件有利于沙尘污染事件的发生,通过无人机探测数据发现高相对湿度有利于颗粒物吸湿增长,气温和风速的上升能够加强大气对流运动,有利于污染物的输送.②在沙尘污染期间,塔中地区PM1、PM2.5和PM10的浓度分别为0.8~45.7、1.0~267.0和1.0~588.7 μg·m-3;民丰地区PM1、PM2.5和PM10的浓度分别为21.5~126.9、39.6~263.6和48.5~520.6 μg·m-3.③在沙尘污染期间,塔克拉玛干沙漠腹地颗粒物组成以粗颗粒物为主,南缘则以细颗粒物为主.民丰地区PM1/PM2.5比值(0.48~0.55)和PM2.5/PM10比值(0.55~0.83)在同时刻均高于塔中地区(PM1/PM2.5为0.18~0.33, PM2.5/PM10为0.33~0.51).④天气形势和后向轨迹表明,此次污染主要由西风环流导致,气团分别从北面翻越天山和东面绕道进入塔克拉玛干沙漠,携带了塔克拉玛干沙漠东部地区沙尘颗粒和新疆北部人为污染物.⑤CALIPSO卫星数据表明,此次污染中气溶胶存在于海拔1~8 km之间,主要集中在低层(消光系数在 海拔1.0~2.2 km左右最大).气溶胶类型为沙尘气溶胶、污染沙尘气溶胶和烟雾气溶胶,其中,沙尘气溶胶占主要部分.  相似文献   

10.
2013年京津冀重污染特征及其气象条件分析   总被引:3,自引:0,他引:3  
2013年中国东部地区多次发生持续的重霾污染事件.为探究其气象条件与重污染事件的关系,本文使用欧洲中心2013年东亚地区的逐日气象数据和北京、天津、石家庄的逐时PM2.5浓度数据以及2013年MICAPS观测数据,分析了重污染事件对应的天气形势,并使用NAQMPS针对2013年1月的重污染事件进行情景模拟.研究结果表明:1北京、天津和石家庄地区PM2.5浓度,夏秋季节日变化不显著,秋冬季节白天低夜间高;3地PM2.5浓度均表现为12-1月浓度最高,7月最低;.2500 hPa平直西风气流,850 hPa弱暖平流,地面处于弱高压后部或高压底部高低空配置下的天气系统,对应着重污染事件的高发期;3源强不变的情况下,京津冀地区由弱高压前部控制转为弱高压控制时,地面温度升高0~5℃,相对湿度增加30%~50%,风速下降2~3 m·s-1,PM2.5浓度变化可达300 μg·m-3.  相似文献   

11.
紫外光照下盐酸环丙沙星的光解性能   总被引:1,自引:0,他引:1  
本研究重点考察了盐酸环丙沙星初始浓度、硝酸铅、硝酸镉、氯化铅、氯化镉等重金属盐对盐酸环丙沙星光降解性能影响.结果表明,黑暗条件下环丙沙星无降解;紫外光照可以有效去除环丙沙星,且环丙沙星的光降解速率随其初始浓度的增大而降低;硝酸铅和硝酸镉(除0.006 mmol·L~(-1)体系外)可以促进环丙沙星的光降解,且随摩尔比的增大(即硝酸盐浓度的降低),环丙沙星的半衰期逐渐增大;随着摩尔比的增大(即氯化盐浓度的降低),氯化铅和氯化镉先促进后抑制环丙沙星的光降解.  相似文献   

12.
2013年1月邯郸市严重霾天气的污染特征分析   总被引:4,自引:3,他引:1  
利用河北工程大学大气环境监测站点的PM10、PM2.5、SO2和NOx在线监测数据,并结合能见度、湿度数据,对邯郸市2012年12月1日到2013年1月31日的大气污染状况进行分析,特别是2013年1月持续发生的霾天气,以探讨严重霾污染的过程特征.结果表明,2013年1月,SO2与NOx的平均浓度分别为225.3 μg·m-3和217.8 μg·m-3,PM10和PM2.5的平均浓度分别为328.5 μg·m-3和229.4 μg·m-3,均超过新颁布的环境空气质量标准,是2012年12月平均浓度的1.4~3.5倍.重污染过程分析结果显示,污染峰值附近几天内PM10、PM2.5的时均浓度变化无明显规律.累积阶段的PM2.5/PM10在0.42~0.52之间,峰值前后上升并超过0.70,扩散阶段PM2.5/PM10降到0.70以下,且呈波动式变化.当PM2.5/PM10小于0.40时,能见度基本位于2~18 km之间;当PM2.5/PM10在0.40~0.60之间时,能见度在0.7~8 km之间;当PM2.5/PM10大于0.60时,能见度分布于2 km以下.  相似文献   

13.
重庆市北碚城区大气污染物浓度变化特征观测研究   总被引:21,自引:6,他引:15  
为了研究重庆市北碚区大气污染物浓度变化特征及其污染状况,采用全自动在线监测仪器对重庆市北碚城区大气污染物进行连续在线监测,分析了2012年1月~2013年2月的大气污染物观测数据.结果表明,除SO2以外,其它污染物均有超出国家新环境空气质量标准(GB 3095-2012)的情况出现,其中细粒子污染最严重.大气污染物浓度具有明显的季节变化,2012年春夏秋冬季各污染物平均浓度:O3为(36.1±19.2)、(48.8±32.6)、(29.8±28.6)、(18.2±15.8)μg·m-3,Ox为(77.6±20.6)、(91.3±37.6)、(77.5±30.6)、(69.4±18.2)μg·m-3,表现为夏高冬低;NO为(11.8±9.4)、(8.2±4.9)、(20.7±17.1)、(30.4±25.1)μg·m-3,NO2为(42.3±13.1)、(40.5±9.9)、(47.2±14.1)、(51.2±15.9)μg·m-3,NOx为(54.1±20.8)、(48.7±12.6)、(67.9±25.5)、(81.6±37.9)μg·m-3,均表现为冬高夏低;SO2为(50.5±23.3)、(26.3±16.7)、(38.8±18.4)、(53.7±23.4)μg·m-3,表现为冬春高而夏秋低;而PM2.5则为(61.4±28.5)、(68.1±32.5)、(61.9±27.1)、(89.6±44.2)μg·m-3,表现出冬季高而其它季节比较平稳的特征.O3、Ox、NO、NOx以及SO2浓度均为单峰型的日变化形式,其中O3和Ox的日变化峰值出现在午后16:00,而NO、NOx及SO2的日最大值则出现在08:00~11:00;NO2和PM2.5的日变化模态呈双峰型,有早晚两个峰值.O3和Ox在夏季日变化振幅最大,而其它污染物则冬季日变化振幅最大.将工作日与周末各污染物浓度的日变化相比,成对t检验分析表明,NO并无明显差异(P=0.14),但N2O工作日显著高于周末(P=0.03),而O3则为工作日极显著低于周末(P<0.001).相关分析表明,O3浓度与气温和风速呈显著或极显著正相关,与相对湿度呈极显著负相关,而NOx则与以上各气象要素的关系正好相反;PM2.5与气温和风速呈负相关,与相对湿度呈正相关;SO2与各气象要素的关系在不同的季节表现不同.除此之外,风向也是影响大气污染物浓度的一个重要因素.  相似文献   

14.
不同环境因素下太湖中四环素的自然消减   总被引:2,自引:1,他引:1  
四环素已经广泛应用于兽药生产和疾病治疗中,并通过禽畜粪便等途径进入环境中,基于四环素残留物的危害性,采用了模拟自然环境状态的实验方法,研究了四环素在不同环境状态(光照、底泥、重金属)下的自然消减过程.结果表明,四环素在自然光照下的消减不明显;未杀菌底泥水体中,四环素的消减速率大于杀菌底泥水体;实验初期,含硝酸铅水体中四环素消减缓慢,随着时间延长,消减速率加快,而在硝酸镉水体中四环素短时间内消减趋势已经十分明显,且消减速率大于硝酸铅水体;以0.08 mmol·L-1四环素为例,四环素在光照下各环境因素中的消减速率依次为:未杀菌底泥(87.2%)>杀菌底泥(70.37%)>硝酸镉水体(64.2%)>硝酸铅水体(32.3%)>空白组(6.6%),各环境因素均促进了四环素的消减.避光时,各环境因素中四环素的消减趋势与光照组相同,但消减速率较光照组小,表明光照对四环素的自然消减具有一定的促进作用.  相似文献   

15.
2017年汾渭平原东部大气颗粒物污染特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
高度集中的煤炭产业和繁忙的交通运输使得汾渭平原成为全国污染最严重的地区之一.利用中国环境监测总站发布的大气环境监测资料,以统计的方法分析了2017年汾渭平原东部三门峡市、运城市、渭南市、洛阳市的颗粒物质量浓度演变特征,并与北京市开展对比分析.结果表明:①2017年汾渭平原东部颗粒物污染形势较为严峻,ρ(PM2.5)年均值范围为61~75 μg/m3,高于北京市(58 μg/m3),ρ(PM2.5)/ρ(PM10)范围为0.47~0.57,远低于北京市的0.66,说明汾渭平原东部一次颗粒物的贡献更为显著.②与北京市相比,汾渭平原东部重污染有效时数较长,在三门峡市、运城市、渭南市和洛阳市出现PM2.5重度及以上污染过程的时数分别占全年总时数的6.56%、8.91%、9.23%和9.10%.但由于汾渭平原东部重污染期间颗粒物质量浓度较北京市低,因此造成汾渭平原东部和北京市重度及以上污染过程中颗粒物质量浓度平均值在颗粒物质量浓度年均值中占比基本相同.③汾渭平原东部颗粒物质量浓度的周变化特征与北京市有显著区别.④重污染期间,汾渭平原东部ρ(PM2.5)和ρ(PM10)的日变化特征与ρ(SO2)相同,均呈白天高、夜间低的特征,而北京市ρ(PM2.5)和ρ(PM10)的日变化特征与ρ(SO2)相反,呈白天低、夜间高的特征,说明汾渭平原东部特殊的能源结构、边界层动力演变和局地环流造成高架点源对重污染期间污染物质量浓度的影响较显著.研究显示,汾渭平原东部应该加强重污染期间高架点源的管控.   相似文献   

16.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

17.
浮游植物最大光合作用效率(F_v/F_m)可以判断水生生态环境状况,是探究梯级筑坝对河流生态环境影响的重要参数。本研究对三岔河梯级水库的浮游植物F_v/F_m及相关的水化学参数进行了季节性调查,探讨F_v/F_m的时空变化及其环境影响因素。结果表明,F_v/F_m具有明显的时空差异性,在空间分布上为库区下泄水河流;F_v/F_m和浮游植物总细胞丰度呈现显著正相关,库区总细胞丰度大,F_v/F_m比其它区域高。在时间分布上为冬季夏季≈秋季春季,表明浮游植物在水温较低时,会提高光合作用效率,F_v/F_m增高。  相似文献   

18.
杀菌剂对湖泊水体温室气体浓度分析的影响   总被引:5,自引:3,他引:2  
通过往湖泊水样中添加杀菌剂(CuSO4和HgCl2),利用平衡法,用气相色谱仪测定CO2、CH4、N2O浓度,研究杀菌剂(CuSO4和HgCl2)添加对湖泊水体CO2、CH4、N2O浓度分析的影响.实验设计:对照组(CK)不加任何试剂;处理组T1加1mL CuSO4溶液,T2加5 mL CuSO4溶液,T3加0.5 mL HgCl2溶液;每组的水样分两批分析:(Ⅰ)预处理完成后立即分析和(Ⅱ)预处理完成后静置两天再分析.结果表明,CuSO4和HgCl2的添加均能明显增加水体中CO2的浓度,CK(Ⅰ)和CK(Ⅱ)的CO2平均浓度分别为(11.5±1.47)μmol·L-1和(14.38±1.59)μmol·L-1,T1(Ⅰ)和T1(Ⅱ)的CO2平均浓度分别为(376±70)μmol·L-1和(448±246.83)μmol·L-1;T2(Ⅰ)和T2(Ⅱ)的CO2平均浓度分别为(885±51.53)μmol·L-1和(988.83±101.96)μmol·L-1;T3(Ⅰ)和T3(Ⅱ)的CO2平均浓度分别为(287.19±30.01)μmol·L-1和(331.33±22.06)μmol·L-1.但CuSO4和HgCl2添加对水体中CH4和N2O的浓度没有影响.对比Ⅰ和Ⅱ的实验结果可知,在水样预处理完成后需当天分析其温室气体(CO2、CH4、N2O)浓度.本研究表明,杀菌剂的添加能显著增加水体CO2的浓度.  相似文献   

19.
闽江口养殖塘水-大气界面温室气体通量日进程特征   总被引:4,自引:3,他引:1  
杨平  仝川  何清华  黄佳芳 《环境科学》2012,33(12):4194-4204
湿地围垦养殖是人类对于滨海湿地的主要干扰方式之一.以闽江口鳝鱼滩湿地围垦养虾塘和鱼虾混养塘为研究对象,利用悬浮箱-气相色谱法对养殖塘秋季水-大气界面CO2、CH4和N2O通量日进程进行了观测并同步测定了地面气象及表层水的物理、生物和化学指标.养虾塘和鱼虾混养塘水-大气界面CO2、CH4和N2O通量均具有明显的日变化特征,2种养殖塘整体上均表现为吸收CO2的汇,CO2通量平均值分别为-48.79 mg·(m2·h)-1和-105.25 mg·(m2·h)-1,排放CH4的源,CH4通量平均值分别为1.00 mg.(m2.h)-1和5.74 mg·(m2·h)-1,鱼虾混养塘水-大气界面CH4排放量和CO2吸收量均高于养虾塘.养殖塘水-大气界面温室气体通量受到诸多环境因子的影响,多元逐步回归分析结果表明,对于养虾塘,叶绿素a是影响其水-大气界面CO2通量日变化的主要环境因子,PO34-和SO24-是影响水-大气界面CH4通量日变化的主要环境要素;鱼虾混养塘水-大气界面CO2通量主要受到水温、叶绿素a的影响,而溶解氧、PO34-和pH是影响其CH4通量的主要环境因子。  相似文献   

20.
济南市春季大气颗粒物污染研究   总被引:10,自引:2,他引:8  
对济南市2005年春季大气颗粒物中PM10、PM2.5和细颗粒物中的黑碳气溶胶的浓度水平、时间分布和日变化进行了观测,并结合气象资料对变化特征进行综合分析,探讨了PM10,PM2.5和黑碳的相对含量以及对能见度的影响等.研究结果表明,PM10和PM2.5平均浓度分别为242.5μg·m-3和109.4μg·m-3.与我国空气质量二级标准PM10日均值150μg·m-3和美国国家空气质量PM2.5日均标准65μg·m-3相比,超标率分别达到80.77%和84.61%,污染较严重;监测期间PM2.5/PM10的平均值为0.456.在PM2.5中,黑碳气溶胶平均质量浓度为5.39μg·m-3,占PM2.5的5.06%,日浓度变化呈双峰型.在监测时间内,污染物浓度与温度无明显的相关性;与相对湿度呈弱正相关;与风速呈明显的负相关关系.降水对PM10、PM2.5和黑碳的清除作用较为显著.PM10、PM2.5和黑碳浓度与能见度均呈负相关,相关系数(r)分别为-0.633、-0.695和-0.704,细颗粒物是影响能见度的主要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号