首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
以厌氧氨氧化颗粒为对象,利用NH4+、NO2-、NO3-和N2O微电极测定了浓度连续分布,并建立微生物原位活性与N2O产生之间的关系.结果表明,NH4+和NO2-同步消耗的厌氧氨氧化活性区分布在颗粒的表层区域(0~1500μm),其中200~400μm活性最高;当NH4+-N浓度为14mg/L(c(NH4+):c(NO2-)=1:1.2)时,NH4+-N和NO2--N最大净体积消耗速率分别为1.19与1.65mg/(cm3·h).反硝化活性主要分布在1500~2500μm的深层区域,当采用...  相似文献   

2.
有研究表明,适量Fe2+与Fe3+能够促进anammox菌体代谢,但对于菌体N2O产量的影响仍未可知。该文以批次实验的形式探究anammox在不同浓度Fe2+与Fe3+浓度下的N2O产量,并分析其微生物组学和功能基因变化。结果表明,加入Fe2+的组别中N2O排放量在20 mg/L Fe2+时最高(0.29 mg/L),30 mg/L Fe2+时下降47.01%;加入Fe3+的组别中N2O排放量随Fe3+浓度递增,30 mg/L Fe3+时N2O最高排放量为0.17 mg/L。微生物群落多样性分析表明,5 mg/L Fe2+和Fe3+能刺激Candidatus Kuenenia的生长,然而反硝化菌Denitratisom...  相似文献   

3.
采用分体式厌氧氨氧化反应装置,以短程硝化-厌氧氨氧化工艺为研究对象,通过改变基质浓度探究其对工艺固碳潜力的影响,寻找最佳固碳量的运行工况;通过收集反应器运行各阶段的污泥样品,对其中的微生物种群多样性进行分析,确定工艺的固碳微生物。试验结果表明:确定进水中NH~+_4-N浓度为180 mg/L时,工艺展现出最佳的固碳能力;短程硝化阶段,当进水中NLR为0.44 kg-N/(m~3·d~(-1))、HRT为10 h时,固碳量为0.285 mg/mg-N;厌氧氨氧化阶段,当进水中NH~+_4-N和NO~-_2-N浓度分别为75 mg/L、95 mg/L,HRT为24 h、NLR为0.13 kg-N/(m~3·d~(-1))时,固碳量为0.16 mg/mg-N。微生物种群多样性分析表明:短程硝化反应器中的优势菌种为Acidobacteria Bacteria(酸杆菌)、Chlorobi(绿菌)、Proteobacteria Bacteria(变形杆菌);厌氧氨氧化反应器中的优势菌种为Planctomycete Bacteria(浮霉菌)、Actinobacteria Bacteria(放线菌)、Proteobacteria Bacteria(变形杆菌)。  相似文献   

4.
羟胺对厌氧氨氧化污泥群落的影响   总被引:1,自引:2,他引:1  
目前,由于厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)过程具有高效率、低能耗和污泥量少的优点,在污水除氮方面具有广阔的应用前景.羟胺既是厌氧氨氧化代谢的中间产物,同时也是一种抑制剂,但是目前关于厌氧氨氧化细菌颗粒如何应对羟胺的压力还没有很好的解释.通过羟胺批次添加实验,发现在投加不同浓度的羟胺情况下(40~80mg·L~(-1)),厌氧氨氧化的反应活性受到了抑制作用,但是无法判断厌氧氨氧化细菌对羟胺的耐受阈值.然后基于实时荧光定量聚合酶链反应(RT-qPCR)技术检测了不同反应器内肼氧化酶(HZO)的mRNA的表达量,发现HZO酶的表达量随着羟胺浓度的增加出现先升高后降低的趋势,由此本研究推测相对于3.12g·L~(-1)的厌氧氨氧化颗粒污泥,其承受的羟胺浓度(以N计)阈值介于60~70mg·L~(-1).同时利用16S rRNA高通量测序的方法对反应器内的颗粒污泥微生物结构与功能进行分析,发现投加适量的羟胺(50mg·L~(-1))有助于增强颗粒污泥中细菌的细胞运动性,促进厌氧氨氧化细菌的组成,提供一个更佳的生态平衡.  相似文献   

5.
群体感应信号分子对污水处理过程中微生物行为和功能微生物含量具有重要影响,但目前其对生物脱氮过程中氧化亚氮(N2O)产生的影响尚不明确.为探明群体感应与N2O产生的关联机制,选取两种N-酰化高丝氨酸内酯类化合物(AHLs)信号分子C6-HSL(N-己酰L-高丝氨酸内酯)和C8-HSL(N-辛酰-L-高丝氨酸内酯),在AO工艺中研究其外源性投加对污水处理效果、N2O产生特征及微生物群落结构的影响.结果表明:①信号分子C6-HSL和C8-HSL能够显著提高处理系统的生物脱氮效率,2个反应器的硝化速率显著升高,NH4+-N去除率分别提高了1.7%和2.2%,TN去除率分别提高了7.6%和5.4%,但CODCr去除率没有发生明显变化.②信号分子对N2O产生量影响显著,投加C6-HSL和C8-HSL的反应器N2O产生总量分别增加了39.0%和11.0%,N2O增量的主要产生途径为好氧处理阶段的硝化细菌反硝化反应.③微生物分析结果显示,污泥中的微生物群落结构,以及与生物脱氮相关的功能微生物含量发生显著变化,投加C6-HSL和C8-HSL的反应器氨氧化细菌(AOB)相对丰度由0.3%分别提至0.5%和0.4%,硝化细菌(NOB)相对丰度由0.03%分别增至0.07%和0.08%,反硝化细菌(DNB)的相对丰度由6.3%分别升至8.5%和7.5%.研究显示,AHLs类外源性信号分子能够显著提高污水生物脱氮过程中关键功能微生物AOB、NOB和DNB的相对丰度,进而提升污水处理效果,但同时增加系统N2O释放量.   相似文献   

6.
氨氧化细菌(AOB)和氨氧化古菌(AOA)是驱动土壤氨氧化过程的"引擎".氨氧化过程在土壤氧化亚氮(N2O)和一氧化氮(NO)排放过程中扮演着重要角色.有机无机肥配施是实现化肥零增长和作物稳产增产的重要途径,但在有机无机肥配施下,菜地土壤AOB和AOA对氨氧化过程的相对贡献仍不清楚.本研究采用选择性抑制的方法(辛炔和乙炔)区分有机肥添加近3年后(2016年10月—2019年5月)AOB和AOA在氨氧化过程中对碱性菜地土壤N2O和NO产生的相对贡献.试验共设5种施肥处理:不施氮肥(CK)、单施尿素(N)、单施有机肥(M)、50%尿素+50%有机肥(M1N1)和80%尿素+20%有机肥(M1N4).结果表明,有机无机肥配施(M1N1和M1N4)可显著增加土壤电导率、有机碳和全氮含量.培养试验发现,与N处理相比,M和M1N1处理分别使N2O排放量增加100.7%和38.8%,NO排放量增加77.9%和42.8%,AOB基因丰度增加16.6%和10.2%,同时,AOB对N2O排放的相对贡献增加6.5%.相反,M1N4处理分别使N2O和NO排放量降低19.3%和4.8%,AOB基因丰度降低37.5%,同时,AOB对N2O及NO排放的相对贡献分别降低7.8%和7.4%.相关分析表明,土壤N2O和NO累积排放量与土壤AOB基因丰度呈显著正相关(p<0.05),与土壤AOA基因丰度无显著相关性.有机无机肥配施下AOB是氨氧化过程的主要驱动者,适当比例的有机无机肥配施(即M1N4)措施可在一定程度上减弱AOB对碱性菜地土壤N2O及NO排放的相对贡献.  相似文献   

7.
厌氧氨氧化菌富集培养过程微生物群落结构及多样性   总被引:2,自引:0,他引:2  
为深入理解厌氧氨氧化菌富集培养过程微生物群落变化特征,采用ASBR反应器进行厌氧氨氧化菌富集培养,考察了不同培养时间微生物群落组成、多样性及物种网络关系.结果表明,通过逐步提高基质浓度,实现了厌氧氨氧化菌富集,NH4+-N和NO2--N去除率分别为97.6%和95.4%,总氮去除率为84.9%.高通量测序发现,整个培养过程优势菌门(相对丰度> 5%)为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、绿弯菌门(Chloroflexi)、浮霉菌门(Planctomycetes)、装甲菌门(Armatimonadetes)和放线菌门(Actinobacteria);富集培养获得的主要厌氧氨氧化菌为Candidatus Brocadia,相对丰度从1.42%增长到24.66%;培养过程,微生物群落优势菌群组成未发生变化,但相对丰度呈现显著差异(P <0.05).富集培养过程不同时间,微生物群落α多样性呈现先升高后降低的趋势,且存在显著差异(P <0.05)...  相似文献   

8.
不同COD浓度下低基质厌氧氨氧化的启动特征   总被引:1,自引:0,他引:1  
采用厌氧序批式反应器(ASBR)处理NH4+-N和NO2--N浓度分别为(25. 00±0. 40) mg·L~(-1)和(33. 00±0. 60) mg·L~(-1)的模拟废水,在温度为30℃时,投加乙酸钠控制COD浓度分别为5. 00、15. 00、30. 00和50. 00 mg·L~(-1),研究对厌氧氨氧化启动的影响.结果表明:①4种COD浓度下分别经过74、94、106和129 d均能成功启动厌氧氨氧化. COD浓度为15. 00 mg·L~(-1)和30. 00 mg·L~(-1)时,反应器脱氮性能较好,稳定运行后,平均出水NH4+-N浓度分别为1. 98 mg·L~(-1)和1. 89 mg·L~(-1),平均出水NO2--N浓度低于0. 62 mg·L~(-1),平均出水TN浓度分别为2. 37、2. 28 mg·L~(-1);②启动过程中反硝化对脱氮的平均贡献率逐渐降低至4. 78%、9. 59%、10. 21%和36. 50%,厌氧氨氧化对脱氮的平均贡献率逐渐上升至95. 22%、90. 41%、89. 79%和63. 50%;③厌氧氨氧化活性分别在第44、76、86和114 d时超过反硝化活性,最后分别达到0. 700、0. 690、0. 670和0. 510mg·(g·h)~(-1),反硝化活性分别为0. 110、0. 130、0. 240和0. 410 mg·(g·h)~(-1).该研究结果可为厌氧氨氧化技术在实际工程中的应用提供参考.  相似文献   

9.
细菌群落是实现厌氧氨氧化系统高效脱氮的核心,而厌氧氨氧化启动过程细菌群落多样性及其功能特征仍未被充分阐明.本研究采用升流式厌氧污泥床(UASB)反应器进行厌氧氨氧化系统启动,利用16S rRNA基因高通量测序技术并结合PICRUSt2功能预测分析,研究启动过程不同时间(d0、d30、d60和d90)细菌群落多样性及功能...  相似文献   

10.
双氰胺对冬闲稻田和油菜地N2O排放的影响   总被引:2,自引:0,他引:2  
冬季的温室气体排放往往被忽视,而最新的研究结果表明,冬闲稻田和冬季油菜地N_2O排放仍较大,研究相应的减排措施及减排机制对于减少农田土壤N_2O排放有重要意义.在中国科学院桃源农业生态试验站选择冬闲稻田和油菜地两种不同土地利用方式,并设置添加和不添加双氰胺(DCD)处理,采用静态箱采集和气相色谱法结合监测N_2O排放动态,利用分子生物学手段分析氨氧化古菌(AOA)和氨氧化细菌(AOB)的群落结构和丰度变化.结果表明,添加DCD后明显抑制了冬闲稻田和油菜地N_2O排放,分别减少了36.7%和23.6%.DCD施入抑制了冬闲稻田AOA和AOB的丰度但只改变AOA的群落结构,DCD使AOA和AOB丰度分别减少了59.3%和73.7%.与此相反,添加DCD只改变油菜地AOB的群落结构同时只抑制了AOB的丰度.本研究表明,施加DCD能有效减少冬闲稻田和冬季油菜地N_2O排放,但减排机制不一致.  相似文献   

11.
不同基质浓度对ANAMMOX菌短期储存的影响   总被引:1,自引:1,他引:1  
高雪健  张杰  李冬  曹正美  郭跃洲  李帅 《环境科学》2018,39(12):5587-5595
在15℃±1℃条件下,将厌氧氨氧化菌混培物分别置于基质浓度为0、60、120 mg·L~(-1)添加比例为1∶1的NH+4-N和NO-2-N环境中短期(15 d)储存,探究不同基质浓度对厌氧氨氧化污泥短期保存及恢复的影响.经过短期储存后进行恢复实验,结果表明,1、2、3号反应器(分别对应0、60、120 mg·L~(-1)基质浓度中储存的厌氧氨氧化菌混培物)中的厌氧氨氧化活性分别下降41. 8%、17. 4%、33. 4.%,1、3号分别由于过度内源呼吸和高基质浓度抑制,导致活性下降较大,2号反应器由于基质浓度相对合适,避免了过度内源呼吸和高基质浓度抑制,使得菌种活性在该基质浓度下保留较好;储存期间,3个反应器内均发生内源呼吸消耗自身有机物的情况,导致EPS含量下降50. 9%、41. 7%、23. 7%和粒径下降31. 6%、16. 7%、8. 2%,表明在基质匮乏期菌体通过内源呼吸的方式维持自身的活性,较高的基质浓度可以在一定程度上延缓内源呼吸过程;在恢复期间,3个反应器分别经过15、10、7 d实现脱氮性能和厌氧氨氧化活性的恢复,表明同菌种增殖富集相比,原系统通过菌种活性增强的方式脱氮性能恢复更快.  相似文献   

12.
开展了连续2 a(2019~2020年)的田间试验,通过设置不施肥(CK)、农户习惯施肥(CF)、二次追肥(TT)和有机肥替代20%化肥(OF)这4个处理,用静态箱-气相色谱法研究施肥对稻田CH4和N2O排放的影响,并综合水稻产量和综合温室效应(GWP)对单位水稻产量温室气体排放强度(GHGI)进行分析,探讨长江中下游典型水稻种植区增产减排的施肥方式.结果表明:(1)与CK相比,两年间各施肥处理均降低了CH4排放,降幅为14.6%~25.1%;增加了N2O排放,增幅为610%~1 836%;(2)与CF相比,TT和OF处理均呈现增加CH4排放和降低N2O排放的趋势,TT和OF处理两年CH4累积排放量年均值的增幅分别为1.8%(P>0.05)和14.0%(P<0.05); TT和OF处理两年N2O累积排放量年均值的降幅分别为63.3%(P<0.05)和49.2%(P<0.05);(3)与CK...  相似文献   

13.
温度对ANAMMOX生物膜工艺的脱氮影响与菌群结构分析   总被引:1,自引:0,他引:1  
吴珊  王淑雅  王芬  季民 《环境科学》2022,43(1):416-423
针对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)工艺常低温运行问题,分别采用无纺布与改性聚氨酯泡沫塑料填料序批式生物膜反应器(sequence batch biofilm reactor,SBBR)处理含氮污水,考察了从35℃降至15℃过程的脱氮效果.结果表明,在进水氮容积负荷...  相似文献   

14.
理解底物碳氮对厌氧条件下水稻土排放氮素气体——氮气(N2)、氧化亚氮(N2O)和一氧化氮(NO)以及二氧化碳(CO2)和甲烷(CH4)的影响,有助于制定合理的温室气体减排措施,定量了解反硝化产物组成对碳底物水平的依赖性,也有助于氮转化过程模型研发中制定正确的关键过程参数选取方法或参数化方案.本研究采用粉砂壤质水稻土为研究对象,设置对照(CK)和加碳(C+)两个处理,前者的初始硝态氮和可溶性有机碳(DOC)含量分别为~50 mg·kg-1和~28 mg·kg-1,后者的分别为~50 mg·kg-1和~300 mg·kg-1.采用氦环境培养-气体及碳氮底物直接同步测定系统,研究了完全厌氧条件下碳底物水平对上述气体排放的影响.结果表明,CK处理无CH4排放,而C+处理可观测到CH4排放;C+处理的综合增温潜势显著高于CK处理(P<0.01);NO、N2O和N2排放量占这3种氮素气体排放总量的比重,在CK处理分别约为9%、35%和56%,在C+处理分别约为31%、50%和19%,处理间差异显著(P<0.01).由此表明,碳底物水平可显著改变所排放氮素气体的组成;对于旱地阶段硝态氮比较丰富的水稻土,避免在淹水前或淹水期间施用有机肥,有利于削减温室气体排放.  相似文献   

15.
淹水水稻土消耗N2O能力及机制   总被引:1,自引:0,他引:1  
王玲  邢肖毅  秦红灵  刘毅  魏文学 《环境科学》2017,38(4):1633-1639
大量研究表明淹水厌氧状态下的水稻田等湿地生态系统中N2O负排放量巨大,对缓解大气温室气体效应有重要意义,但水稻土壤对大气N2O的吸收消耗潜力以及调控潜力发挥的微生物机制却鲜见报道.本实验以表层渍水水稻土壤(0~5 cm)为研究对象,通过室内厌氧培养手段,分析环境N2O浓度的提高对土壤N2O消耗能力的影响以及nosZ基因丰度的变化规律.结果表明,淹水厌氧状态下的水稻土壤中nosZ基因绝对丰度(以干土计)在DNA水平上达到108 copies·g-1,具有很强的N2O转化还原潜力.回归分析结果显示环境N2O浓度与土壤N2O消耗速率显著线性正相关(r2=1,P<0.001),土壤N2O消耗能力可被高浓度的环境N2O极大程度激发,达到4567.99 μg·(m2·h)-1.与此同时较高水平的nosZ基因丰度在不同浓度N2O处理间无显著差异,说明DNA水平上的nosZ基因丰度可能已经不是限制N2O还原的关键因子,微生物调控因子需进一步探索.  相似文献   

16.
太湖地区湖水与河水中溶解N2O及其排放   总被引:8,自引:2,他引:8  
水体是N2O排放的重要来源.2000-09~2001-09,每月2次采样(重复3次)连续监测太湖地区太湖和大运河水体N2O排放通量和水中溶解的N2O浓度,还同时监测不同深度水样中的N2O浓度.结果表明,太湖N2O-N的年均排放通量为3.53 μg/(m2·h),而大运河已高达122.5,μg/(m2·h).太湖湖水中溶解N2O-N浓度为0.36μg/L,大运河河水中浓度高达11.31μg/L,浅水型水体是N2O排放的源.结果还表明,不同深度水中N2O浓度差异不明显,而时间差异显著.水面N2O的排放通量和水中溶解的N2O浓度呈显著正相关关系,二者又都与水温呈显著正相关. .  相似文献   

17.
基质比对ABR厌氧氨氧化工艺脱氮性能的影响   总被引:1,自引:5,他引:1  
为解决厌氧氨氧化底物去除不彻底导致总氮去除偏低的问题,通过控制不同的进水基质比,对厌氧折流板反应器(ABR)的厌氧氨氧化脱氮性能进行了研究.结果表明,ABR厌氧氨氧化系统最佳进水N_2~O--N/NH+4-N为1.34,此时NH+4-N和N_2~O--N的去除率同时达到99.99%左右,总氮去除率达到峰值为87%,当进水N_2~O--N/NH+4-N从1逐渐降低至0.49和从1.34逐渐提高至1.62时,反应器对NH+4-N和N_2~O--N的绝对去除量较为稳定,NH+4-N或N_2~O--N过量对ABR厌氧氨氧化系统没有产生明显抑制;此外,不同基质比条件下,NH+4-N和N_2~O--N的去除基本在第1隔室完成,基质比变化对ABR各隔室的脱氮效果没有产生显著影响,ABR厌氧氨氧化系统对基质浓度的变化具有较好的稳定性.  相似文献   

18.
在低总氮(TN)浓度条件下考察了Fe2+促进串联两级ANAMMOX生物膜反应器脱氮性能的可行性.结果表明,ρ(Fe2+)为5、10和15 mg·L-1能够有效促进厌氧氨氧化反应,ρ(Fe2+)为10 mg·L-1对两级ANAMMOX生物膜反应器的促进程度最大,在进水ρ(TN)约为150 mg·L-1,总氮负荷(NLR)为0.62 kg·(m3·d)-1条件下,最高总氮去除率(NRE)可达81.71%.添加Fe2+可促进系统胞外聚合物(EPS)的分泌以及亚铁血红素c的合成.批次试验结果进一步验证了ρ(Fe2+)为5、10和15 mg·L-1时对厌氧氨氧化菌活性的促进作用,其中ρ(Fe2+)为10 mg·L-1时的比厌氧氨氧化活性(SAA)是对照组的3.6倍,而当ρ(Fe2+)为20 mg·L-1时,AnAOB活性受到明显抑制.高通量测序结果显示,投加Fe2+均促进了反应器中Candidatus_Kuenenia丰度的增加,其中ρ(Fe2+)为10 mg·L-1时两个反应器中Candidatus_Kuenenia的相对丰度分别增至16.18%和4.22%.基于Fe2+促进下两级厌氧氨氧化的稳定运行为厌氧氨氧化生物膜工艺处理低总氮浓度废水提供了参考.  相似文献   

19.
基质暴露水平对ANAMMOX微生物的生长代谢有着重要意义,目前关于基质暴露水平对ANAMMOX污泥长期富集过程中生长特性的研究少有报道.采用两个连续流搅拌反应器,在逐步提升进水负荷的过程中,研究了高基质暴露水平培养方式(R1:出水NH_4~+-N和NO_2--N浓度均为40~60 mg·L~(-1))与低基质暴露水平培养方式(R~2:出水NH_4~+-N和NO_2--N浓度均为0~20 mg·L~(-1))对ANAMMOX微生物生长量和生物活性,以及反应器脱氮效能的影响及机制.结果表明,高基质暴露水平培养方式更有利于ANAMMOX反应器脱氮性能的提升.相比之下,高基质暴露水平培养方式下获得的NLR [0. 69 kg·(m~3·d)~(-1)]和NRR [0. 41 kg·(m~3·d)~(-1)]分别是低基质暴露水平培养方式的2倍;高基质暴露水平培养方式下,ANAMMOX污泥浓度(以VSS计)和总基因拷贝数分别达到1805 mg·L~(-1)和4. 81×1012copies,更有利于ANAMMOX微生物的快速富集培养;低基质暴露水平培养方式下,ANAMMOX污泥的活性更强[以N/VSS计,0. 27 g·(g·d)~(-1)],有利于富集生物活性更高的ANAMMOX污泥.  相似文献   

20.
通过田间试验,在冬小麦和大豆生长季设置3种不同臭氧(O3)浓度的处理,包括自由空气(对照,CK)、100 n L·L-1O3浓度(T1)和150 n L·L-1O3浓度(T2),采用静态箱-气相色谱法测定N2O排放通量,研究地表O3浓度升高对冬小麦-大豆轮作系统N2O排放的影响.结果表明,与CK相比,在冬小麦返青期,T1和T2处理都降低了土壤-冬小麦系统N2O累积排放量,降幅分别为37.8%(P=0.000)和8.8%(P=0.903);在拔节-孕穗期,T1和T2处理使N2O累积排放量分别降低了15.0%(P=0.217)和39.1%(P=0.000);从冬小麦全生育期来看,T1、T2的N2O累积排放量分别降低了18.9%(P=0.138)和25.6%(P=0.000).由于本年度大豆生长季降水偏少,受干旱胁迫的影响,O3浓度升高对大豆田N2O排放的作用不明显.本研究表明地表O3浓度升高会减少旱作农田N2O排放量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号