共查询到20条相似文献,搜索用时 15 毫秒
1.
Bergés-Tiznado Magdalena E. Márquez-Farías J. Fernando Osuna-Martínez C. Cristina Páez-Osuna Federico 《Environmental geochemistry and health》2021,43(9):3441-3455
Environmental Geochemistry and Health - Distribution of arsenic (As) in tissues and gonads of the Indo-Pacific sailfish Istiophorus platypterus and the dolphinfish Coryphaena hippurus from the SE... 相似文献
2.
Wessley Merten Richard Appeldoorn Roberto Rivera Donald Hammond 《Marine Biology》2014,161(8):1823-1834
The vertical movements of six adult male dolphinfish (Coryphaena hippurus) (95–120 cm estimated fork length), caught using standard sportfishing methods, were investigated using high-rate single-point pop-up satellite archival transmitters from 2005 to 2011 in the western central Atlantic. Data revealed a diel activity pattern within the mixed surface layer with dives below the thermocline suggesting temperature is not a barrier to vertical movements for short periods of time. Dolphinfish were tracked for periods of 4.96–30.24 day (Σ = 83.37 day), reaching depths >200 m, and in temperatures ranging from 16.20 to 30.87 °C. The six tags allowed comprehensive vertical movement analyses by time of day, duration at depth, and based on vertical movement patterns. The longest (>60 min), deepest (>30 m), and most extensive vertical movement patterns occurred during night rather than day, with the most time spent near the surface during the day. Dolphinfish spent 66 % of their time in the surface layer (0–9.9 m) and only one individual spent 8 % of the monitoring period diving >8 °C from the maximum surface temperatures recorded while tracked. Two tags were analyzed based on lunar phase and revealed contrasting relationships between vertical movements during new and full phases. Our results suggest dolphinfish vertically shift between surface and at-depth feeding strategies to exploit aggregating epipelagic and mesopelagic prey items leading to predictable diel vertical movements. 相似文献
3.
Ocean acidification is not happening in isolation but against a background of chronic low-level pollution for most coastal marine environments. The reproductive and larval stages of marine invertebrates can be highly sensitive to the impacts of both environmental pollutants and ocean acidification, but very little is currently known regarding the potential impacts of combined contaminant and high CO2 exposures on the health of marine organisms. Ocean acidification research to date has focused heavily on the responses of calcifying marine invertebrate larvae and algae, and as such the polychaetes as a group, despite their ecological importance, remain understudied. Here, we investigate the effects of elevated seawater CO2 (pH range 8.1–7.4, plus an extreme pH of 7.2 in the sperm motility experiments), in combination with the environmental pollutant copper (0.002 μM), on the early life history stages of the intertidal polychaete Pomatoceros lamarckii from two populations. P. lamarckii sperm appear to be robust to elevated seawater CO2. Whilst all three of the sperm motility end points measured showed a response to elevated CO2, these responses were small and not linear. The percentage of motile sperm and sperm curvilinear velocity were significantly reduced in the lower pH treatments of 7.4 and 7.2, whereas sperm straight-line velocity (VSL) was mostly unaffected except for an increased VSL at pH 8.0. Fertilisation success was investigated using two populations from the South West (UK), one from Torquay and one from Plymouth Sound. Fertilisation success was slightly but significantly reduced at the 7.6 and 7.4 pH treatments for both populations (a 9.0 % reduction in fertilisation success from pH 8.1 to 7.4 for Torquay), but with a greater effect observed in the population from Plymouth Sound (a 13.33 % reduction in fertilisation success). No additional impact of 0.002 μM copper exposure on fertilisation success was found. Larval survival was found to be much more sensitive to elevated CO2 than sperm function or fertilisation, and a significant interaction with copper exposure was observed. These results demonstrate the potential for polychaete larvae to be affected by predicted ocean acidification conditions and that chronic coastal pollutants, such as copper, have the potential to alter larval susceptibility to ocean acidification conditions. 相似文献
4.
5.
6.
Changes in the chemical composition of developing dolphin (Coryphaena hippurus) eggs and prefeeding yolksac larvae were determined in order to estimate probable dietary requirements of first-feeding larvae. Daily dry matter, protein nitrogen (PN), non-protein nitrogen (NPN), lipid, gross energy content, fatty acid and amino acid profiles from Day 1 to Day 2 eggs and Day 1 to Day 3 larvae were compared. Lipid was the primary endogenous energy source accounting for the daily caloric deficit through both the egg and larval stages, except over the day of hatching. The catabolism of lipid by embryos (0.078 cal d–1) was greater than that by yolksac larvae (0.036 cal d–1). The higher demand for energy by embryos was related to a greater rate of protein synthesis during the egg stage. The ratio of PN:NPN increased during egg development without change in total nitrogen content, but was constant throughout the yolksac larvae period. The lipid content per embryo did not decrease over the hatching period (Day 2 to 3, postspawning). However, there was a loss in amino acid content not totally accounted for by sloughing of the chorion at hatching. This loss, as protein, accounted for 0.053 cal of gross energy, which represented 70% of the total estimated energy needs of the fish over this period. Loss of non-essential amino acids (25%) was higher than that of essential amino acids (13%). Proline and tyrosine accounted for 32% of the total loss of amino acids at this time. The only preferential use of fatty acids over any period was a small but significant drop in the content of C22:6n-3 prior to the onset of feeding (Day 5, postspawning). It is speculated that the pattern of energy-substrate use of first-feeding dolphin larvae will reflect the pattern of endogenous energy use during the egg and prefeeding yolksac larval stages. Diets or feeding regimens with lipid as the primary energy source, and containing a fatty acid profile similar to that of eggs or yolksac larvae, should be useful in culturing this species, at least during the early feeding stages. 相似文献
7.
Population growth and social/technological developments have resulted in the buildup of carbon dioxide (CO2) in the atmosphere and oceans to the extent that we now see changes in the earth’s climate and ocean chemistry. Ocean acidification is one consequence of these changes, and it is known with certainty that it will continue to increase as we emit more CO2 into the atmosphere. Ocean acidification is a global issue likely to impact marine organisms, food webs and ecosystems and to be most severely experienced by the people who depend on the goods and services the ocean provides at regional and local levels. However, research is in its infancy and the available data on biological impacts are complex (e.g., species-specific response). Educating future generations on the certainties and uncertainties of the emerging science of ocean acidification and its complex consequences for marine species and ecosystems can provide insights that will help assessing the need to mitigate and/or adapt to future global change. This article aims to present different educational approaches, the different material available and highlight the future challenges of ocean acidification education for both educators and marine biologists. 相似文献
8.
9.
Effects of ocean acidification on the early developmental stages of the horned turban,Turbo cornutus
Toshihiro Onitsuka Ryo Kimura Tsuneo Ono Hideki Takami Yukihiro Nojiri 《Marine Biology》2014,161(5):1127-1138
To estimate the impact of CO2-driven ocean acidification on the early life stages of gastropods, the effects of increased partial pressure of seawater carbon dioxide (pCO2) (800–2,000 μatm) on the early developmental stages and larval shell length of the commercially important gastropod, the horned turban snail, Turbo cornutus were investigated. Increase in experimental seawater pCO2 had an increasingly negative impact on the early developmental rate; the proportion of embryos or larvae displaying retarded development increased at higher pCO2. The proportion of embryos that developed to the 4-cell stage at 2 h after fertilization decreased linearly with increasing pCO2. At ~1,000 μatm pCO2, retarded development was observed in ~50 % of larvae. No embryos developed to the 4-cell stage at 2,000 μatm pCO2 within 2 h of fertilization. A similar trend continued until 24–26 h after fertilization; the proportion of larvae attaining veliger stage by 24–26 h also decreased with increasing pCO2. The shell length of T. cornutus veligers decreased gradually as seawater pCO2 increased, but markedly decreased in seawater under nearly unsaturated and unsaturated conditions (≤1.04) of the aragonite saturation state (Ω aragonite). The results indicate that increased pCO2 seawater has a progressive and acute effect on embryonic and larval T. cornutus, and imply that the extended early developmental period and/or the downsized larval shell produced by ocean acidification will have a negative impact on survival, settlement and recruitment well into the future. 相似文献
10.
Rebecca K. James Christopher D. Hepburn Christopher E. Cornwall Christina M. McGraw Catriona L. Hurd 《Marine Biology》2014,161(7):1687-1696
The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions. 相似文献
11.
Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway
Burgel Schalkhausser Christian Bock Kristina Stemmer Thomas Brey Hans-O Pörtner Gisela Lannig 《Marine Biology》2013,160(8):1995-2006
The ongoing process of ocean acidification already affects marine life, and according to the concept of oxygen and capacity limitation of thermal tolerance, these effects may be intensified at the borders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4 °C (winter) or to 10 °C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold-exposed (4 °C) groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55 % under normocapnia to 90 % under hypercapnia. We therefore excluded the 4 °C groups from further experimentation. Scallops at 10 °C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normocapnia- and hypercapnia-exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared with normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal’s performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow. 相似文献
12.
Some studies have demonstrated that elevated CO2 concentrations in ocean waters negatively impact metabolism and development of marine fish. Particularly, early developmental stages are probably more susceptible to ocean acidification due to insufficient regulations of their acid-base balance. Transgenerational acclimation can be an important mechanism to mediate impacts of increased CO2 on marine species, yet very little is known about the potential of parental effects in teleosts. Therefore, transgenerational effects were investigated on life history in juvenile three-spined sticklebacks Gasterosteus aculeatus by acclimating parents (collected in April 2012, 55°03′N, 8°44′E) and offspring to ambient (~400 µatm) and elevated (~1,000 µatm) CO2 levels and measured parental fecundity as well as offspring survival, growth and otolith characteristics. Exposure to elevated CO2 concentrations led to an increase in clutch size in adults as well as increased juvenile survival and growth rates between 60 and 90 days post-hatch and enlarged otolith areas compared with fish from ambient CO2 concentrations. Moreover, transgenerational effects were observed in reduced survival and body size 30 days post-hatch as well as in enlarged otoliths at the end of the experiment, when fathers or both parents were acclimated to the high-CO2 environment. These results may suggest that elevated CO2 concentrations had rather positive effects on life-history traits of three-spined sticklebacks, but that parental acclimation can modify these effects without improving offspring fitness. Although the mechanistic basis of such transgenerational acclimation remains unclear, selective gradients within generations seem to determine the direction of transgenerational effects. 相似文献
13.
Effect of amino acids on the swimming activity of newly hatched turbot larvae (Scophthalmus maximus)
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5
M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded
on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths,
rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny.
In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming
trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The
total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot
larvae was 10−5
M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour
is discussed.
Received: 12 June 1997 / Accepted: 13 January 1998 相似文献
14.
K. P. Balakrishnan 《Marine Biology》1969,2(3):224-227
Eggs of Thrissocles species are found in surface plankton in the Ernakulam Channel (Cochin Harbour)during February to May 1967. The eggs hatch within 24 h. Empty egg shells have characteristic apertures, through which the embryos have emerged; yolk is resorbed 36 h after hatching.Larvae (36 to 72 h groups) assemble at the lighted region of the aquaria during day-time and scatter to different levels at night. Larvae older than 72 h show no inclination to assemble as before. All larvae died between 96 and 110 h after hatching. Many batches of eggs were reared in the same medium, and all of them behaved as described. The results indicate that the right type of food was available in the aquaria for larvae up to a period of 72 h. The volume of water also appears to have a bearing upon the survival rate and longevity of the larvae since, in small aquaria, more larvae died at an early stage. 相似文献
15.
Food limitation is likely to be a source of mortality for fish larvae in the first few weeks after hatching. In the laboratory,
we analyzed all aspects of foraging in cod larvae (Gadus morhua Linnaeus) from 5 to 20 d post-hatching using protozoa (Balanion sp.) and copepod nauplii (Pseudodiaptomus sp.) as prey. A camera acquisition system with two orthogonal cameras and a digital image analysis program was used to observe
patterns of foraging. Digitization provided three-dimensional speeds, distances, and angles for each foraging event, and determined
prey and fish larval head and tail positions. Larval cod swimming speeds, perception distances, angles, and volumes increased
with larval fish size. Larval cod swam in a series of short intense bursts interspersed with slower gliding sequences. In
94% of all foraging events prey items were perceived during glides. Larval cod foraging has three possible outcomes: unsuccessful
attacks, aborted attacks, and successful attacks. The percentage of successful attacks increased with fish size. In all larval
fish size classes, successful attacks had smaller attack distances and faster attack speeds than unsuccessful attacks. Among
prey items slowly swimming protozoans were the preferred food of first-feeding cod larvae; larger larvae had higher swimming
speeds and captured larger, faster copepod nauplii. Protozoans may be an important prey item for first-feeding larvae providing
essential resources for growth to a size at which copepod nauplii are captured.
Received: 20 April 1999 / Accepted: 12 January 2000 相似文献
16.
Electron backscatter diffraction (EBSD) is a powerful microscopic technique to characterise the crystallography of biomineralisation. Here, we use high-resolution EBSD to characterise one of the least studied shells in the ocean, the female argonaut brood chamber, and to examine the changes in shell microstructure in response to incubation in decreased pH conditions. The thin (225 μm) shell of Argonauta nodosa is magnesium calcite with an average magnesium content of ca. 5.1 Wt % MgCO3. EBSD and scanning electron microscopy (SEM) revealed that calcification of the shell is bidirectional with formation of irregular crystalline grains. Following a 2 week incubation in a range of pH treatments (pH, 8.1–7.2), shell fragment weight decreased by dissolution in pH ≤ 7.8. EBSD and SEM revealed altered shell crystallography and microstructure at pH ≤ 7.4 due to preferential etching down crystallite grain boundaries and a change in crystalline orientation on both the inner and outer shell surfaces. Our study highlights the value of EBSD for the detailed examination of biogenic carbonates and its potential use in the field of ocean acidification research. 相似文献
17.
18.
Richard Brill Yonat Swimmer Carina Taxboel Katherine Cousins Timothy Lowe 《Marine Biology》2001,138(5):935-944
We hypothesize that the morpho-physiological adaptations that permit tunas to achieve maximum metabolic rates (MMR) that
are more than double those of other active fishes should result in high water and ion flux rates across the gills and concomitant
high osmoregulatory costs. The high standard metabolic rates (SMR) of tunas and dolphin fish may, therefore, be due to the
elevated rates of energy expenditure for osmoregulation (i.e. teleosts capable of achieving exceptionally high MMR necessarily
have SMR). Previous investigators have suggested a link between activity patterns and osmoregulatory costs based on Na+-K+ ATPase activity in the gills of active epipelagic and sluggish deep-sea fishes. Based on these observations, we conclude
that high-energy-demand fishes (i.e. tunas and dolphin fish) should have exceptionally elevated gill and intestinal Na+-K+ ATPase activity reflecting their elevated rates of salt and water transfer. To test this idea and estimate osmoregulatory
costs, we measured Na+-K+ ATPase activity (V
max) in homogenates of frozen samples taken from the gills and intestines of skipjack and yellowfin tunas, and the gills of dolphin
fish. As a check of our procedures, we made similar measurements using tissues from hybrid red tilapia (Oreochromis mossambicus ×O. niloticus). Contrary to our supposition, we found no difference in Na+-K+ ATPase activity per unit mass of gill or intestine in these four species. We estimate the cost of osmoregulation to be at
most 9% and 13% of the SMR in skipjack tuna and yellowfin tuna, respectively. Our results, therefore, do not support either
of our original suppositions, and the cause(s) underlying the high SMR of tunas and dolphin fish remain unexplained.
Received: 7 September 2000 / Accepted: 4 December 2000 相似文献
19.
Marta S. Pimentel Katja Trübenbach Filipa Faleiro Joana Boavida-Portugal Tiago Repolho Rui Rosa 《Marine Biology》2012,159(9):2051-2059
The impact of a realistic warming scenario on the metabolic physiology of early cephalopod (squid Loligo vulgaris and cuttlefish Sepia officinalis) life stages was investigated. During exposure to the warming conditions (19 °C for the western coast of Portugal in 2100), the increase in oxygen consumption rates throughout embryogenesis was much steeper in squid (28-fold increase) than in cuttlefish (11-fold increase). The elevated catabolic activity–accelerated oxygen depletion within egg capsules, which exacerbated metabolic suppression toward the end of embryogenesis. Squid late-stage embryos appear to be more impacted by warming via metabolic suppression than cuttlefish embryos. At all temperature scenarios, the transition from encapsulated embryos to planktonic paralarvae implied metabolic increments higher than 100 %. Contrary to the nektobenthic strategy of cuttlefish newborns, the planktonic squid paralarvae rely predominantly on pulsed jet locomotion that dramatically increases their energy requirements. In the future, hatchlings will require more food per unit body size and, thus, feeding intake success will be crucial, especially for squid with high metabolic rates and low levels of metabolic reserves. 相似文献