首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multi-component screening analysis method for polar to medium-polar water pollutants was developed. Sample clean-up and group separation are performed by sequential solid-phase extraction (SSPE) using automated SPE with C18 and polymeric sorbent materials. Analyses are performed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) using a single-quadrupole instrument. More than 90 priority compounds of environmental interest--comprising the most important chemical and substance classes: phenols, carboxylic acids, aromatic sulfonates, aromatic amines, pharmaceuticals, surfactants, dyes, and pesticides--have been chosen for the experiments. The compounds are divided by the SSPE procedure into 3 different polarity classes. The extraction recoveries were determined in the 3 fractions for every single substance, and were for most of the analytes in the range of 50-100%. A mixture of hexane-dichloromethane was used for the elution of nonpolar compounds like alkylphenols from C18. Methanol and acetone are well suited for the elution of more polar substances. The limits of detection (LODs) were determined for all compounds. Effluents from municipal and industrial wastewater treatment plants (WWTPs) treating waste water from textile industries; and the corresponding receiving waters (rivers and lakes) have been analysed with the developed method. Urban and industrial pollution was observed in rivers and streams in the area north of Milan, Italy. In the water samples different phenols (nitrophenols, bisphenol A, nonylphenol), alkylphenol ethoxylate surfactants, their metabolites with endocrine disrupting potential, aromatic sulfonates, linear alkylbenzenesulfonate surfactants, dyes, pesticides, pharmaceuticals, and a dichlorobenzidine compound were identified.  相似文献   

2.
The present paper reports a detailed study that is based on the monitoring of naproxen, ibuprofen, and diclofenac in Mbokodweni River and wastewater treatment plants (WWTPs) located around the city of Durban in KwaZulu-Natal Province of South Africa. Target compounds were extracted from water samples using a multi-template molecularly imprinted solid-phase extraction prior to separation and quantification on a high-performance liquid chromatography equipped with photo diode array detector. The analytical method yielded the detection limits of 0.15, 1.00, and 0.63 μg/L for naproxen, ibuprofen, and diclofenac, respectively. Solid-phase extraction method was evaluated for its performance using deionized water samples that were spiked with 5 and 50 μg/L of target compounds. Recoveries were greater than 80% for all target compounds with RSD values in the range of 4.1 to 10%. Target compounds were detected in most wastewater and river water samples with ibuprofen being the most frequently detected pharmaceutical. Maximum concentrations detected in river water for naproxen, ibuprofen, and diclofenac were 6.84, 19.2, and 9.69 μg/L, respectively. The concentrations of target compounds found in effluent and river water samples compared well with some studies. The analytical method employed in this work is fast, selective, sensitive, and affordable; therefore, it can be used routinely to evaluate the occurrence of acidic pharmaceuticals in South African water resources.  相似文献   

3.
采用固相萃取-高效液相色谱-串联质谱法(SPE-HPLC-MS/MS)建立了地表水中25种抗生素类药物和8种非抗生素类药物的分析方法。通过重点优化质谱参数、色谱条件、样品pH、洗脱溶剂组成及用量等确定了最佳分析条件。水样经过滤、固相萃取柱富集净化后,选择Shim-pack XR-ODS为色谱柱,以乙腈和0.2%甲酸-2 mmol/L乙酸铵-水溶液为流动相进行梯度洗脱,采用电喷雾电离源,在多反应监测模式下(MRM)分析测定,内标法定量。33种药物的仪器定量限为0.012~4.68 ng/L,方法检出限为0.011~7.60 ng/L,地表水加标回收率为53.7%~122%,相对标准偏差为1.22%~32.1%(n=6)。方法成功应用于北京市凉水河12个地表水样分析,共检出32种药物,检出质量浓度为未检出~239 ng/L。利托那韦(RTV)作为新型冠状病毒诊疗方案中推荐的药物在凉水河检出率为100%。  相似文献   

4.
Determination of organophosphorus fire retardants and plasticizers at trace levels in wastewater is described. In this work, microwave assisted extraction (MAE) and solid-phase microextraction (SPME) are used for sample preparation to extract and preconcentrate the analytes, followed by analysis by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS) for phosphorus-specific detection. Gas chromatography coupled to time of flight mass spectrometry (GC-TOF-MS) was used to confirm the organphosphorus fire retardants in wastewater. The detection limits of organophosphorus fire retardants (OPFRs) were 29 ng L(-1) for tri-n-butyl phosphate (TnBP), 45 ng for L(-1) for tris(2-butoxyethyl)phosphate (TBEP), and 50 ng L(-1) for tris(2-ethylhexyl)phosphate (TEHP). Optimized extraction conditions were performed at 65 degrees C for 30 min and with 10% NaCl. Application of MAE during the sample preparation prior to the SPME allowed the detection of tris(2-ethylhexyl) phosphate, which has been difficult to determine in previous work. Application of the method to wastewater samples resulted in detecting 3.1 microg L(-1) P from TnBP, 5.0 microg L(-1) P from TBEP, and 4.0 microg L(-1) P from TEHP. The presence of these compounds were also confirmed by SPME-GC-TOF-MS.  相似文献   

5.
A simple on-line method was developed for the analysis of pharmaceuticals, pesticides and some metabolites in drinking, surface and wastewater samples. The technique is based on the use of on-line solid-phase extraction combined with liquid chromatography electrospray tandem mass spectrometry with positive electrospray ionization (LC-ESI(PI)-MS/MS). The injection of only 1 mL of filtered water sample is used with a total analysis time of 20 min, including the period required to flush the SPE cartridge with organic solvent and reconditioning the LC column. Method detection limits were in the range of 2 to 24 ng L(-1) for the compounds of interest, with recoveries from 87 to 110% in surface as well as wastewater samples. Matrix effects were observed for some compounds without exceeding more than 25%. All results displayed a good degree of reproducibility, with relative standard deviations (RSD) of less than 12% for all compounds. Moreover, at least 200 samples were analyzed without altering the performance of the pre-concentration column. This method was preferred over traditional off-line procedures because it minimizes tedious sample preparation, increases productivity and sample throughput. The analysis of various water and wastewater samples showed that caffeine, carbamazepine and atrazine could be detected in all the samples analysed and the selected compounds are always present in at least one of the sample types.  相似文献   

6.
高效液相色谱-串联质谱法测定废水中5种喹诺酮类抗生素   总被引:2,自引:0,他引:2  
建立高浓度有机废水中5种喹诺酮类抗生素的高效液相色谱-串联质谱测定方法。水样经HLB固相萃取小柱富集净化,12 ml甲醇洗脱、浓缩并加入内标溶液后,定容至1 mL待测。以C18柱为分离柱,含0.01%甲酸的甲醇-含0.01%甲酸的水溶液为流动相,目标物质在10 min内分离。在0.25~1 250 ng/mL范围内,目标物质线性关系良好(R20.99)。基质加标试验结果表明,纯水中的回收率为61.40%~91.92%,废水中的回收率为54.92%~101.87%,检出限为0.25~2.5 ng/L,方法定量限为0.36~3.99 ng/L。应用该方法对21家猪场的64份废水样品进行分析,5种喹诺酮类抗生素的检出频率为47%~95%,平均检出浓度为980~5 734 ng/L。该方法快速、准确,适用于高浓度有机废水中喹诺酮类抗生素的同时测定。  相似文献   

7.
The presence of the anesthetic lidocaine (LDC), the analgesic tramadol (TRA), the antidepressant venlafaxine (VEN) and the metabolites O-desmethyltramadol (ODT) and O-desmethylvenlafaxine (ODV) was investigated in wastewater treatment plant (WWTP) effluents, in surface waters and in groundwater. The analytes were detected in all effluent samples and in only 64% of the surface water samples. The mean concentrations of the analytes in effluent samples from WWTPs with wastewater from only households and hospitals were 107 (LDC), 757 (TRA), 122 (ODT), 160 (VEN) and 637 ng L(-1) (ODV), while the mean concentrations in effluents from WWTPs treating additionally wastewater from pharmaceutical industries as indirect dischargers were for some pharmaceuticals clearly higher. WWTP effluents were identified as important sources of the analyzed pharmaceuticals and their metabolites in surface waters. The concentrations of the compounds found in surface waters ranged from 相似文献   

8.
9.
A solid phase extraction (SPE) method has been developed and applied in conjunction with a previously reported liquid chromatography tandem mass spectrometry (LC-MS-MS) procedure for the determination of illicit drugs and abused pharmaceuticals in treated wastewater and surface water samples at the ng L(-1) level. A full method validation was also performed and determined levels of analytical sensitivity were found to lie in the 1-10 ng L(-1) range using river water as a test sample matrix and a sample size of 500 mL. The developed procedure was successfully applied for the determination of the chosen analytes in wastewater treatment plants in Dublin, Ireland and rapidly expanding commuter towns in the surrounding counties. Cocaine was detected in 70% of the collected samples in the range of 25-489 ng L(-1), its primary metabolite, benzoylecognine (BZE) was also detected in the range of 22-290 ng L(-1). Other substances detected included morphine, Tempazepam and the primary metabolite of methadone.  相似文献   

10.
The aim of this work is to establish baseline levels of pharmaceuticals in three wastewater treatment plant (WWTP) streams in the greater Dublin region to assess the removal efficiency of the selected WWTPs and to investigate the existence of any seasonal variability. Twenty compounds including several classes of antibiotics, acidic and basic pharmaceuticals, and prescribed medications were selected for investigation using a combination of membrane filtration, solid phase extraction (SPE) cleanup, and liquid chromatography–electrospray ionization tandem mass spectrometry. Fourteen of the selected compounds were found in the samples. Increased effluent concentrations, compared to influent concentrations, for a number of compounds (carbamazepine, clotrimazole, propranolol, nimesulide, furosemide, mefenamic acid, diclofenac, metoprolol, and gemfibrozil) were observed. The detected concentrations were generally below toxicity levels and based on current knowledge are unlikely to pose any threat to aquatic species. Mefenamic acid concentrations detected in both Leixlip and Swords effluents may potentially exert ecotoxicological effects with maximum risk quotients (i.e., ratio of predicted exposure concentration to predicted no effect concentration) of 4.04 and 1.33, respectively.  相似文献   

11.
Steroid estrogens such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2) have been suspected to be the main contaminants, which can affect the endocrine system of animals. Many authors have investigated these chemicals in the domestic wastewater treatment plants (WTP). However, wastewater from industries producing steroid contraceptives has not got ample attention. From the environmental point of view, the four steroids are very significant because even very low concentrations (ng/L) can cause reproductive disturbances in human, livestock and wildlife. The main purpose of the present investigation was to develop an analytical method for the determination of the four steroid estrogens present in WTP of a pharmacy factory, mainly producing contraceptive medicine in Beijing, China. Analysis was performed by solid-phase extraction (SPE) system and liquid chromatography combined with tandem mass spectrometry (LC/MS/MS). The average recoveries from effluent samples ranged from 88% to 103% and the precision of the method ranged from 9% to 4%. Based on 0.5-L wastewater samples, the limit of quantification (LOQ) was determined at 0.7 ng/L for E1, 0.8 for E2, 0.9 ng/L for E3, and 0.5 ng/L for EE2 in influent, and 1.0 ng/L for E2 and EE2, and 2.0 ng/L for E1 and E3 in effluent. In the influent samples, average concentrations of 80, 85, 73 and 155 ng/L were determined for E1, E2, E3 and EE2, respectively, showing that they were removed in this WTP to the extent of 79, 73, 85 and 67%, respectively.  相似文献   

12.
Hexahydrophthalic anhydride (HHPA) and methylhexahydrophthalic anhydride (MHHPA) are two highly allergenic compounds used in the chemical industry. A method was developed for quantification of protein adducts of HHPA and MHHPA in human plasma. The plasma was dialysed and the anhydrides were hydrolysed from the proteins at mild acidic conditions. The released hexahydrophthalic acid (HHP acid) and methylhexahydrophthalic acid (MHHP acid) were purified by reversed solid phase extraction followed by derivatisation with pentafluorobenzyl bromide. The derivatives were analysed using GC-MS in negative ion chemical ionisation mode with ammonia as moderating gas. As internal standards, deuterium labelled HHP and MHHP acids were used. The detection limits were 0.06 pmol mL(-1) plasma for HHP acid and 0.03 pmol mL(-1) plasma for MHHP acid. The between-day precisions for HHP acid were 18% at 0.3 pmol mL(-1) and 8% at 4 pmol mL(-1). For MHHP acid, the precisions were 13% at 0.3 pmol mL(-1) and 9% at 4 pmol mL(-1). There were strong correlations (r=0.94 for HHPA and 0.99 for MHHPA) between total plasma protein adduct concentrations and serum albumin adduct levels. Workers exposed to time-weighted average air levels of HHPA between < 1 and 340 microg m(-3) and between 2 and 160 microg m(-3) for MHHPA had plasma adduct levels between the detection limits of the methods and 8.40 and 19.0 pmol mL(-1), respectively.  相似文献   

13.
An analytical method to determine a selection of 27 frequently prescribed and consumed pharmaceuticals in biosolid enriched soils and digested sludges is presented. Using a combination of pressurized liquid extraction, solid phase extraction and liquid chromatography with tandem mass spectrometry, it was possible to detect all analytes in each sample type at the low-sub ng g(-1) level. Solid phase extraction efficiencies were compared for 6 different sorbent types and it was found that Waters Oasis HLB cartridges offered enhanced selectivities with 20 analytes showing final method recoveries > or =60% in both soils and digested sludges. The method was validated for linearity, range, precision and limits of detection in both sample matrices. All analytes were then determined in sludge enriched soils as well as the precursor thermally dried sludge fertilizer produced from a primary wastewater treatment plant. Levels of the antibacterial agent triclosan were found to exceed 20 microg g(-1) in digested sludge and 5 microg g(-1) in thermally dried sludge cake. Significant traces of carbamazepine and warfarin were also detected in the above samples.  相似文献   

14.
The occurrence of the metabolites of five human pharmaceuticals was investigated in treated wastewater, surface waters and sediments. Metabolites of carbamazepine (carbamazepine epoxide), diclofenac (4'- and 5-hydroxy diclofenac) and atorvastatin (o- and p-hydroxy atorvastatin) were typically detected in flow proportional 24 h composite samples of wastewater effluent collected from the Norwegian cities of Oslo and Troms? at higher concentrations than the parent pharmaceutical. The concentrations determined in discharged effluent were as high as 3700 ng L(-1) for 5-hydroxy diclofenac. The overall mean concentration of metabolites being typically higher in the primary treated effluent from the city of Troms? compared to the tertiary treatment performed on the Oslo effluent. Metabolites of carbamazepine (carbamazepine-10,11-epoxide), metoprolol (α-hydroxy metoprolol) and simvastatin (hydroxy simvastatin) were detected in surface water samples collected from Oslofjord at concentrations of up to 108 ng L(-1), whilst α-hydroxy metoprolol and simvastatin hydroxy carboxylic acid were also detected in sediments at low ng L(-1) concentrations. These screening data show that the metabolites of selected pharmaceuticals are being discharged into the Norwegian coastal environment and that certain metabolites occur in marine surface waters and sediments.  相似文献   

15.
The occurrence of twenty pharmaceutical compounds was quantitatively determined in effluents from two major Oslo city hospitals, Rikshospitalet and Ullev?l, along with influent, sludge and final effluent from the city's VEAS wastewater treatment works (WTW). Composite hospital effluents were collected over a twelve week period and were showed to contain paracetamol, metoprolol, diclofenac, ibuprofen, 17beta-Estradiol, estriol, estrone, oxytetracycline, tetracycline, doxycycline, chlorotetracycline, demeclocycline, trimethoprim, ciprofloxacin, sulfamethoxazole, cyclophosphamide and ifosfamide. Three pharmaceuticals were not detected above the limit of detection; cefuroxime, 17alpha-ethinylestradiol and meclocycline. Composite influent, sludge and effluent samples were collected from VEAS WTW over a seven week period. The influent into VEAS WTW contained all of the same selected substances detected in the hospital effluents, except for oxytetracycline, chlorotetracycline, demeclocycline, cyclophosphamide and ifosfamide. The percentage of pharmaceuticals entering the works from the hospitals was <10% for all of the selected compounds. VEAS sludge samples contained a different profile of substances reflecting their physico-chemical properties. Hydrophobic antibiotics, such as oxytetracycline, tetracycline and ciprofloxacin, were detected in all of the collected sludge samples. Their absence in the collected influent samples suggests that they enter the works bound to effluent particles, with the dissolved fraction observed in the hospital effluents partitioning onto particulate matter within the sewerage network. The final effluent from VEAS WTW contained reduced concentrations of many pharmaceuticals, including paracetamol, ibuprofen and sulfamethoxazole. For other compounds, such as metoprolol, diclofenac and trimethoprim, there were often higher concentrations in the effluent than the influent. These effluent concentrations represent median inputs varying from low g day(-1) (e.g. paracetamol and ibuprofen) to nearly 200 g day(-1) (e.g. metoprolol and trimethoprim) into Oslofjord. A simple risk assessment showed that the antibiotic ciprofloxacin may at times pose an acute risk to the Oslofjord aquatic environment.  相似文献   

16.
The presence of emerging contaminants (ECs) in different aquatic systems may contribute to hazardous effects on aquatic organisms and subsequently on human health. In the present work, liquid chromatography coupled to a quadrupole time of flight mass spectrometer (LC-Q-ToF-MS) was used to identify and quantify a series of ECs in Periyar River in Aluva region, Kerala, India. The water samples were pre concentrated using solid-phase extraction (SPE) prior to analysis. The compounds were probed in both positive and negative ionization mode using electro spray ionization (ESI). Method validations were performed for linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision (intraday and inter day). The ECs were quantified using standard calibration curve. The identified nine ECs include pharmaceuticals, personal care products, steroids, surfactants, and phthalate. A relatively high concentration was observed in the case of 2-dodecyl benzene sulfonic acid (1012 ng/l) and low concentration was observed for lignocaine (4.3 ng/l; since this is below LOQ, the value is only approximate). In addition, we have identified another 28 organic compounds using the technique of non-target analysis out of which seven compounds fall in the category of surfactants. Being the first report on ECs in Periyar River, the data is very important as this river is one of the biggest and important rivers of Kerala having several purification units for drinking water in the province.  相似文献   

17.
建立了采用液相色谱-串联质谱法(LC-MS/MS)同时测定污水中10种精神活性物质的分析方法。污水样品经甲酸与甲酸铵调节pH后,加入氘代内标混匀,离心并过滤膜后可直接上样分析。研究表明,在1~250 ng/L的线性范围内,10种精神活性物质的线性相关系数均大于0.992,定量限均低于0.5 ng/L。在3个加标水平下,10种精神活性物质的加标回收率为87.2%~114%,相对标准偏差为0.53%~3.60%(n=3)。将该方法应用于某区域10份生活污水样品的检测,在3份水样中检出吗啡、甲基苯丙胺、氯胺酮等精神活性物质,对应的质量浓度范围分别为3.41~9.55、0.90~1.63、1.06~1.78 ng/L。与经固相萃取前处理后的分析方法相比,该方法可在10 min内完成分离和检测的全过程,具有简单、快速、节约的优点,可用于污水样品中10种痕量水平精神活性物质的定量分析。  相似文献   

18.
Solid-phase microextraction (SPME) coupled with GC-MS has been used to monitor the degradation of polycyclic aromatic hydrocarbons (PAHs) by ultrasound treatment. Immersion SPME sampling enabled the fast and solventless extraction of target contaminants at the low microg l(-1) concentration level. The developed protocol was found to be linear in the concentration range from 0.1 to 50 microg l(-1) for most target analytes, with the limits of detection ranging between 0.01 and 0.70 microg l(-1) and the relative standard deviations between 4.31 and 27%. The developed SPME protocol was used to follow concentration profiles of aqueous solutions containing 16 PAHs, which were subject to low frequency ultrasonic irradiation. At the conditions employed in this study (80 kHz of ultrasound frequency, 130 W l(-1) of applied electric power density, 30 microg l(-1) of initial concentration for each of the 16 PAHs), sonochemical treatment was found capable of destroying the lower molecular weight PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene) within 120-180 min of irradiation. The higher molecular weight PAHs were more recalcitrant to ultrasound treatment.  相似文献   

19.
固相萃取-GC/MS法测定水中有机氯农药   总被引:10,自引:2,他引:8  
建立了固相萃取-气相色谱/质谱联用测定水中痕量六六六、滴滴涕和环氧七氯的方法。采用C18固相萃取柱富集水样,二氯甲烷/丙酮混合溶剂洗脱,加入菲-d10作为内标,利用气相色谱/质谱联用仪选择离子监测模式检测,内标法定量,定性、定量准确,线性响应良好,干扰小,按采样1 L计算,方法检出限为4.26ng/L~19、2ng/L,RSD在0、4%-6、3%之间,平均加标回收率在77.7%~118%之间,实际样品测定结果表明方法能满足环境水体中痕量有机氯农药的监测要求。  相似文献   

20.
A method using GC-MS and derivatization with N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) was developed for the analysis of 20 phenolic compounds in atmospheric samples (gas and particles). Air sampling was carried out using a Hi-Vol sampler with glass fibre filter and XAD-2 resin at a flow rate of 60 m(3) h(-1). The particle and gas phases were collected separately over a period of 4 h. Samples were Soxhlet extracted, evaporated to dryness under nitrogen and refilled with acetonitrile. 100 microl of these extracts were derivatized with 100 microl of MTBSTFA at 80 degrees C for 1 h under strong stirring. Phenolic compounds were injected into a GC-MS in splitless mode and quantified as their TBDMS derivatives in the SIM mode. Mass spectral analysis of the derivatives of the 20 compounds studied indicates that the spectra are highly specific showing an ion at [M - 57]+ which is useful for structure confirmation or analysis at low levels using selected ion monitoring. Quantification limits varied between 5 microg l(-1) and 10 microg l(-1) which correspond to 20 pg m(-3) and 40 pg m(-3) for 250 m(3) of air sampled. This method was successfully applied to atmospheric samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号