首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
芳香烃降解菌是石油污染土壤修复的主要生物资源。采用芘平板升华法对克拉玛依原油污染土壤样品进行驯化培养,分离得到一株芘降解菌B2,经16S rDNA基因序列比对及系统发育进化分析表明,该菌株为假单胞菌属(Pseudo-monas)。采用正交设计方法优化菌株B2对高分子量多环芳烃芘的降解条件,并构建多元非线性模型预测菌株B2对芘的最佳降解条件,结果表明:在接种量OD660 nm为0.60、降解温度为40℃、降解时间为6.0 d时,预测菌株B2对芘的降解最大达到38.214 mg/L,实际测得最大降解量为37.906 mg/L,预测准确率为99.19%。运用PCR技术克隆B2的邻苯二酚-2,3-双加氧酶基因(B2C23O)(I.2.A亚家族),核酸序列分析表明,该基因全长880 bp,具有一个完整的开放阅读框,编码246个氨基酸,与已报道的Pseudomonas putida W619同源性最高为97%;对B2C23O基因编码氨基酸序列进行分析,发现其具有邻位断裂双加氧酶模式结构,推测菌株B2通过邻位裂解途径降解芘代谢中间产物邻苯二酚。  相似文献   

2.
以苯酚为唯一碳源,采用逐量分批的方法从被酚类物质污染的土壤中驯化、筛选、分离降酚菌,利用形态学、培养特性、生理生化反应以及分子手段鉴定所得菌株,研究了该菌株生长与降酚的关系以及其降酚能力,并设计引物检测降酚酶基因。结果表明,获得的一株高效降酚菌GDYW-0027经鉴定为不动杆菌属(Acinetobacter),它的生长速率与苯酚的降解速率基本同步,48h内对高质量浓度(2.2g/L)苯酚的降解率为86.73%;在菌株GDYW-0027中检测到苯酚羟化酶及邻苯二酚2,3双加氧酶基因片段,推测其采用间位开环方式打开苯环。  相似文献   

3.
从某城市生活污水处理厂曝气池的活性污泥中分离出一株以苯胺为唯一碳源和氮源的高效降解菌Z1。通过16S r DNA基因序列分析,初步鉴定菌株。结果表明,菌株Z1为假单胞菌(Pseudomonas sp.)。该菌株最适生长和降解条件为p H 6.0~8.0、30℃、盐度0.1%~1.0%。在此条件下,16 h内能够将400 mg/L的苯胺降解完全,且当苯胺初始浓度为1 300 mg/L时,苯胺的最大降解速率为41.4 mg/(L·h),32 h内降解率达到98%。菌株对苯胺的最大耐受浓度为1 800mg/L。当苯胺和苯酚共存时,苯胺的降解效果随着苯酚浓度的增大而减小,当苯酚浓度达到370 mg/L时,Z1无法降解苯胺。添加氯化铵做外加氮源能解决高浓度苯酚和苯胺共降解的问题。在苯胺降解过程中大约有43%苯胺态氮转化成氨氮释放到环境中。  相似文献   

4.
通过驯化富集培养,从白洋淀底泥中分离筛选出数株能够有效降解苯胺的菌株,经过反复筛选,得到一株能够以苯胺为唯一碳源、高效降解苯胺的菌株BA-1-3.其利用苯胺的最适pH值为7.0,最适温度为30℃,在苯胺浓度为1000 mg/L,180 r/min条件下振荡培养60 h,降解率达到80%以上.经鉴定,菌株BA-1-3属苍白杆菌属(Ochrobactrumsp.).  相似文献   

5.
为了得到一株具有降解微囊藻毒素-RR(MC-RR)特性的产芽孢菌株,采用加热富集芽孢菌的方法,从太湖分离到一株MC-RR降解菌CM1,该菌对MC-RR具有强烈的降解特性。通过形态学特征、生理生化特征及16S rDNA序列分析鉴定该菌株属于耐硼赖氨酸芽孢杆菌(Lysinibacillus boronitolerans)。通过研究温度和pH值对菌株CM1降解MC-RR能力的影响,发现菌株CM1在60 h将MC-RR由12.77μg/mL降解到1.67μg/mL,降解率达86.90%,最适降解温度为37℃,最适pH值为7.0。CM1菌株的胞外物质和胞内物质均能降解MC-RR,但胞内物质具有更强烈的降解特性,12 h可以将7.27μg/mL的MC-RR完全降解。为丰富MC-RR降解菌纯菌种研究以及在去除水体中MC-RR应用研究方面提供了理论基础。  相似文献   

6.
一株1,2-二氯苯降解菌的分离鉴定及其降解特性   总被引:2,自引:1,他引:2  
采用富集驯化方法,从盐城芦苇湿地根际土壤中分离得到一株可高效降解1,2-二氯苯的菌株,命名为DL-1。该菌株可以在以1,2-二氯苯为惟一碳源的无机培养基上生长,能够耐受最高浓度为200 mg/L的1,2-二氯苯。根据形态特征观察、生理生化鉴定和16S rDNA序列同源性分析,该目标菌株被鉴定为蜡质芽孢杆菌(Bacillus cereus)。菌株DL-1对1,2-二氯苯降解性能研究表明,该菌株为一株兼性厌氧菌,其适宜降解浓度、适宜温度、适宜pH值和适宜接种量分别为120mg/L、32℃、7和10%,在适宜降解条件下降解12,-二氯苯4 d其降解率达到80.3%。本实验为利用该菌株降解12,-二氯苯污水的应用提供了理论基础。  相似文献   

7.
为了得到一株具有降解微囊藻毒素一RR(MC—RR)特性的产芽孢菌株,采用加热富集芽孢菌的方法,从太湖分离到一株MC.RR降解菌CMl,该菌对MC—RR具有强烈的降解特性。通过形态学特征、生理生化特征及16SrDNA序列分析鉴定该菌株属于耐硼赖氨酸芽孢杆菌(Lysinibacillusb oronitolerans)。通过研究温度和pH值对菌株CMl降解MC—RR能力的影响,发现菌株CMl在60h将MC—RR由12.77μg/mL降解到1.67μg/mL,降解率达86.90%,最适降解温度为37℃,最适pH值为7.0。CMl菌株的胞外物质和胞内物质均能降解MC—RR,但胞内物质具有更强烈的降解特性,12h可以将7.27μg/mL的MC-RR完全降解。为丰富MC-RR降解菌纯菌种研究以及在去除水体中MC—RR应用研究方面提供了理论基础。  相似文献   

8.
以芘(PYR)为唯一碳源,在青岛受石油烃污染的码头的海底沉积物中分离到1株PYR海洋降解菌株P7,经过形态学观察、16S rRNA基因序列分析鉴定菌株P7属于交替单胞菌(Alteromonas)。该菌株在20 d内对PYR的降解率可达44.8%。经GC-MS鉴定分析发现,菌株P7降解芘的代谢产物中含有邻苯二甲酸和水杨酸,且细胞代谢过程中产生邻苯二酚2,3-双加氧酶,由此推测出Alteromonas sp. P7对芘的降解中间产物中含有邻苯二酚,且对芘的降解是通过邻苯二甲酸途径和水杨酸途径实现的。通过对分离得到的Alteromonas sp. P7进行测序,得到1条全长4 597 467 bp的基因组,对该基因序列注释,得到编码基因8 164个,平均GC含量为44.26%。重将测序结果与数据库比对并检索,菌株P7含有参与编码邻苯二酚2,3-双加氧酶的基因。  相似文献   

9.
一株耐盐柴油降解菌的分离鉴定及其降解性能   总被引:2,自引:0,他引:2  
从某油田附近受石油污染土壤中分离出一株以柴油为惟一碳源的耐盐菌株LS1。通过对菌株的生理生化特性、菌体的形态观察及16S rDNA基因序列分析鉴定菌株LS1为假单胞菌属(pseudomonas)。该菌株可耐受的最高盐度(NaCl)和柴油浓度分别为6%~8%和12 000 mg/L。菌株生长的适宜pH和温度条件分别为6.0~8.0和28~36℃。在盐度为6%、pH为7.0、温度为32℃、菌种投加量为10%的条件下,初始浓度为3 000 mg/L的柴油经6 d降解后,去除率可达78.3%,加入适量外加碳源葡萄糖和蔗糖,可使降解率分别提高至92%和90%左右。菌株LS1的耐盐机理可能是通过在细胞内积累甜菜碱以调节菌株细胞内外渗透压平衡。投加甜菜碱可提高耐盐菌LS1在高盐环境下对柴油的降解效率。  相似文献   

10.
采用自制驯化装置,从土壤中分离纯化出一株能以乐果为单一碳源生长的菌株,命名为菌株LPx。根据生理生化特征和16S rRNA(GenBank Accession No.HM488993)基因序列分析,初步将该菌株鉴定为假单胞菌属(Pseudomonas sp.)。通过对其降解乐果特性研究,结果显示,菌株LPx降解乐果的最适pH为7.5、最适温度为30℃、最适接种量为10%(体积分数)。最适条件下,100 mg/L乐果可在120 h内基本被降解。菌株对乐果的降解属于高浓度底物抑制的酶促反应,vmax(不存在抑制剂时最大酶促反应速率)=0.734 d-1,km(米氏常数)=21.700 mg/L,k1(底物抑制系数)=259.215 mg/L。  相似文献   

11.
低温降解苯胺高效菌群的筛选及特性研究   总被引:4,自引:1,他引:4  
在低温下对吉林化工厂污水处理厂曝气池活性污泥、低温生活污水处理系统曝气池活性污泥、实验室菌种库保存的高效菌剂以及以上三者的混合样等4种样品进行了变温培养、驯化,筛选到一组低温降解苯胺高效菌群--吉化污泥.该菌群对苯胺初始浓度不高于800 mg/L驯化培养基中苯胺的降解率可以达到100%,当初始苯胺浓度升到1000 mg/L时,去除率也能保持在60%以上;菌胶团形成能力较强,菌胶团形成指数达到21.2%;并且在高岭土絮凝试验中表现出很强的生物絮凝能力.该菌群的生长温度范围为5-35℃,最适培养温度15℃,属于耐冷菌群.适合作为生物强化菌剂投加到低温苯胺类废水生物处理系统中,提高处理系统的净化能力.葡萄糖作为共代谢基质对低温苯胺生物降解有促进作用,而无机氮源作用不明显.  相似文献   

12.
对氨基苯磺酸降解菌的分离及其特性研究   总被引:1,自引:1,他引:0  
吴楚 《环境工程学报》2009,3(11):2000-2004
从温州地区受污染的河水中分离到一株能降解对氨基苯磺酸的菌株WZR-3,该菌株能以对氨基苯磺酸为惟一碳源、能源生长。经对其形态特征、生理生化以及16S rDNA序列分析,该菌株初步鉴定为人苍白杆菌(Ochrobactrum anthropi)。该菌株利用对氨基苯磺酸生长时最适生长温度和pH值分别为30℃和7。该菌在10 g/L对氨基苯磺酸时仍能生长,最适生长浓度为300 mg/L对氨基苯磺酸。降解底物广谱性测试表明,该菌株还能降解多种芳香类化合物。  相似文献   

13.
The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L?1. The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200–250 mg L?1) and high (4 g L?1) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate.  相似文献   

14.
从植物根际土壤中筛选出能分泌吲哚乙酸(3-indole acetic acid,IAA),并对荧蒽具有一定降解效果的菌株ZZ21.30℃、180 r/min摇床培养24 h,能产生39.81 mg/L IAA,静息细胞对50 mg/L荧蒽转化7 d后,降解率达25.61%.此外,该菌还耐盐碱,能解磷,在pH为10、含盐度为7%的LB培养基上能够生长,30℃培养72h对磷酸三钙液体培养基的溶磷量达120.86 mg/L.经形态学观察、部分生理生化特征测定以及16S rDNA的保守序列鉴定,初步确定该菌株为耐盐节杆菌(Arthrobacter pascens).为促进菌株生长,提高菌株IAA产量,设定了基于培养时间、初始pH、通气量、温度、不同碳源和氮源的单因素菌株发酵条件优化实验,结果表明,促进菌株生长和提高IAA分泌的最佳培养条件并不完全一致,综合考量得到最佳发酵培养条件是初始pH为6,装液量为45 mL/150 mL,28℃摇床培养15 h,最佳碳、氮源分别是甘露醇和酵母粉.在最佳单因素优化条件下菌株产IAA能力最强可达92.31 mg/L.  相似文献   

15.
In this study, an Alcaligenes sp. strain DG-5 that can effectively degrade dichlorodiphenyltrichloro-ethanes (DDTs) under aerobic conditions was isolated from DDTs-contaminated sediment. Various factors that affect the biodegradation of DDTs by DG-5 were investigated. About 88 %, 65 % and 45 % of the total DDTs were consumed within 120 h when their initial concentrations were 0.5, 5 and 15 mg L?1, respectively. However, almost no degradation was observed when their concentration was increased to 30 mg L?1, but the addition of nutrients significantly improved the degradation, and 66 % and 90 % of the total DDTs were degraded at 336 h in the presence of 5 g L?1 peptone and yeast extract, respectively. Moreover, the addition of 20 mM formate also enhanced the ability of DG-5 to transform DDTs, and its DDT transformation capacity (Tc) value was increased by 1.8 - 2.7 fold for the pure (p,p’-DDT or o,p’-DDT only) and mixed systems (p,p’-DDT, o,p’-DDT, p,p’-DDD and p,p’-DDE). Furthermore, it was found that competitive inhibition in the biodegradation by DDT compounds occurred in the mixed system.  相似文献   

16.
好氧反硝化苯酚降解菌的分离鉴定及动力学   总被引:1,自引:0,他引:1  
从驯化菌群中分离筛选出一株好氧反硝化苯酚降解细菌,经生理生化反应及16S rDNA测序,鉴定为Diaphorobacter属细菌。在好氧条件下,该菌株以苯酚为唯一碳源和能源,利用NO-3-N作为反硝化电子受体,其生长与反硝化特性研究表明:在接种量5%(体积分数),30℃,180 r/min振荡培养条件下,菌株降酚能力可达1 400 mg/L,同时,能有效去除初始浓度为165 mg/L的硝酸盐氮,60 h其去除率为91.5%,高含量苯酚对菌体生长有一定的抑制作用。应用Haldane方程对其生长过程进行动力学模拟,拟合曲线与实验测定值相关性良好,各参数分别为μmax(最大比增长率)0.324 h-1,Ks(半饱和常数)9.36 mg/L,Ki(抑制常数)146.72 mg/L,通过理论分析及实验验证得,该菌株苯酚降解动力学与其生长动力学表现出相似的趋势。  相似文献   

17.
一株微囊藻毒素降解菌的分离与鉴定   总被引:2,自引:1,他引:2  
以水华蓝藻细胞中提取的微囊藻毒素为筛选物质,从太湖水华腐烂蓝藻中富集筛选出1株微囊藻毒素降解菌。该菌株革兰氏染色呈阴性,细胞细长杆状,菌落黄色,圆形,不透明,接触酶、氧化酶实验均呈阳性。16S rRNA基因序列的长度为1 416 bp(GenBank登录号为FJ976656)。系统发育树显示,该菌株与微嗜酸寡养单胞菌(Stenotrophomonas acidam-iniphila)的亲缘关系最近。通过菌株形态特征、生理生化特征和16S rRNA基因序列分析,将此菌株鉴定为微嗜酸寡养单胞菌,不同于已报道的微囊藻毒素降解菌属种。微囊藻毒素降解实验表明,该菌株5 d内将15.4 mg/L的微囊藻毒素完全降解,降解能力高于假单胞菌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号