首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
实验利用射频磁控溅射镀膜工艺,分别在光纤和石英玻璃上成功制备了ZnO薄膜。采用X射线衍射仪、原子力显微镜和荧光分光光度计对薄膜进行了测试分析,并对其光催化降解苯酚的性能进行了对比测试。结果表明,该薄膜具有良好的C轴取向性,光致发光峰分别位于362nm、421nm和486nm附近,且随着薄膜样品晶粒的减小而出现蓝移,光纤上ZnO薄膜的光催化能力是以石英玻璃为基底的ZnO薄膜的193倍,光催化效果显著。  相似文献   

2.
纳米复合ZnO-TiO2晶体的制备及其光电催化性能研究   总被引:7,自引:0,他引:7  
采用溶胶一凝胶法制备了纳米复合半导体ZnO—TiO2薄膜,并进行了结构和光电催化性能的测试。TiO2薄膜对五氯酚溶液的光电催化降解结果表明:当输入正向偏压后,其光催化性能有较大提高。由于ZnO的掺入,半导体薄膜电极的光吸收能力增强;同时,Zn^2 可能作为光生载流子的浅俘获中心,导致表面界面电荷转移加速,从而延长光生电子/空穴对的寿命并抑制其复合,有效地提高了TiO2薄膜光电催化活性。  相似文献   

3.
纳米TiO2薄膜在不同陶瓷表面的负载及其光催化性能研究   总被引:8,自引:0,他引:8  
利用2种不同表面处理的陶瓷作为载体,用溶胶凝胶法在其表面进行了纳米TiO2光催化薄膜的负载。采用X射线衍射法(XRD)、X射线光电于能谱仪(XPS)和扫描电镜(SEM)对薄膜的粒径、横断面及表面组成进行了表征和分析,结果表明,TiO2的平均粒径约为15nm,釉面陶瓷TiO2薄膜分布均匀,膜厚约为300nm;无釉陶瓷TiO2薄膜分布不均,膜层不明显;2种载体中的一些基质离子在TiO2薄膜有渗透。苯酚的降解实验表明,以2种不同表面处理的陶瓷为载体的TiO2薄膜对苯酚的降解均符合一级反应动力学,就催化活性而言,TiO2/釉面陶瓷〉TiO2/无釉陶瓷,分析认为基质渗透的Ca^2+有降低TiO2光催化活性的作用;该薄膜对实际生产多菌灵废水具有催化降解作用。重复降解实验20次,TiO2/釉面陶瓷和TiO2/无釉陶瓷对苯酚的去除率仅分别降低9%和6%。  相似文献   

4.
纳米复合ZnO-TiO2晶体的制备及其光电催化性能研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了纳米复合半导体ZnO-TiO2薄膜,并进行了结构和光电催化性能的测试.TiO2薄膜对五氯酚溶液的光电催化降解结果表明当输入正向偏压后,其光催化性能有较大提高.由于ZnO的掺入,半导体薄膜电极的光吸收能力增强;同时,Zn2+可能作为光生载流子的浅俘获中心,导致表面界面电荷转移加速,从而延长光生电子/空穴对的寿命并抑制其复合,有效地提高了TiO2薄膜光电催化活性.  相似文献   

5.
以Zn(CH3COO)2·2H2O为起始原料,采用非水解溶胶—凝胶法合成ZnO光催化剂,并对其进行了表征。以亚甲基蓝为光催化反应的模型化合物,考察了ZnO光催化剂的紫外光催化活性,探索了清除剂(异丙醇、草酸铵、对苯醌、H2O2酶)对ZnO紫外光催化活性的影响。结果表明,此方法制备的ZnO具有良好的光催化性能,光照1h,ZnO光催化降解亚甲基蓝的脱色率达到84.1%;而同样条件下,TiO2光催化降解亚甲基蓝的脱色率为73.8%。  相似文献   

6.
利用2种不同表面处理的陶瓷作为载体,用溶胶凝胶法在其表面进行了纳米TiO2光催化薄膜的负载.采用X射线衍射法(XRD)、X射线光电子能谱仪(XPS)和扫描电镜(SEM)对薄膜的粒径、横断面及表面组成进行了表征和分析,结果表明,TiO2的平均粒径约为15 nm,釉面陶瓷TiO2薄膜分布均匀,膜厚约为300 nm;无釉陶瓷TiO2薄膜分布不均,膜层不明显;2种载体中的一些基质离子在TiO2薄膜有渗透.苯酚的降解实验表明,以2种不同表面处理的陶瓷为载体的TiO2薄膜对苯酚的降解均符合一级反应动力学,就催化活性而言,TiO2/釉面陶瓷>TiO2/无釉陶瓷,分析认为基质渗透的Ca2 有降低TiO2光催化活性的作用;该薄膜对实际生产多菌灵废水具有催化降解作用.重复降解实验20次,TiO2/釉面陶瓷和TiO2/无釉陶瓷对苯酚的去除率仅分别降低9%和6%.  相似文献   

7.
水相、泥相中混合及单一菌株对菲的微生物降解;复合纳米SnO2/ZnO光催化降解对甲酚溶液的研究;Pt/TiO2薄膜光催化降解甲基橙的性能研究;两种水生园林植物对小流域富营养化水体的净化作用;废钯-炭催化剂回收钯的工艺中试研究  相似文献   

8.
使用简单丙三醇-水混合溶剂热法制备碱式碳酸锌微纳米球前驱物,经退火得到ZnO微纳米球,通过液相沉淀法把AgBr纳米颗粒固定在ZnO微纳米球表面,在AgBr和ZnO之间形成异质结,有效地增强了AgBr/ZnO复合物的光催化活性。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)与紫外可见分光光度计对样品物相、形貌、元素组成及光学性质进行表征。在可见光条件下,研究ZnO及不同AgBr的ZnO/AgBr复合材料的光催化活性,结果表明:循环修饰5次AgBr的ZnO微纳米球(AgBr颗粒负载质量分数为5%,5%-AZ)样品对罗丹明B的光催化降解性能最好;该复合材料的光催化可重复性使用结果显示,循环使用次数的增加,其光催化性能有下降的趋势。通过分析可知,在光照条件下AgBr的分解引起异质结构变化。  相似文献   

9.
以Zn(NO_3)_2·6H_2O与对苯二甲酸制备的网状金属有机骨架材料IRMOF-1为前驱体,在500、600、700℃下的N_2氛围中焙烧得到不同焙烧温度制备的介孔ZnO/C,分别记为ZnO/C-500、ZnO/C-600、ZnO/C-700,利用X-射线衍射、扫描电子显微镜、紫外—可见漫反射光谱、傅立叶变换红外光谱、比表面积分析等手段对其进行表征,并用于降解四环素(TC)、强力霉素(DC)和土霉素(OTC)。结果表明,制备的介孔ZnO/C为六方纤锌矿结构,纯度高。C的复合可以降低ZnO的禁带宽度,从而拓宽了ZnO的光谱吸收范围,提高ZnO对光的利用率。焙烧产物表面随焙烧温度的升高而变粗糙,—OH含量减少,但ZnO/C-700出现碎裂现象。因此,ZnO/C-600具有最大的BET比表面积(254.9m~2/g)和孔径(2.49nm)。ZnO/C-600对TC、DC和OTC的降解效果也是最好的,120min降解率分别达到98.2%、91.1%、80.7%,重复使用4次,其光催化降解性能基本保持不变,稳定性良好。  相似文献   

10.
储金宇  仲蕾 《环境工程学报》2013,7(3):1035-1039
针对浓度大、色度高的印染废水难以处理的情况,选用加入光纤的光催化体系进行研究。采用溶胶凝胶法制备了Ag+/TiO2粉体光催化剂,用固体紫外可见光谱、X射线衍射对其进行表征。选用亚甲基蓝溶液作为目标降解物,评价了Ag+/TiO2在可见光下的光催化活性。分别考察了加入石英芯侧光光纤与塑料侧光光纤反应体系下,催化剂量、光纤数量、光照强度和pH值等因素对亚甲基蓝降解实验的影响。结果表明,选用20 mg/L的亚甲基蓝,采用催化剂量为11.67 g/L,500根侧光光纤,300 W的外部光源,pH值约为11时,光催化降解效果最佳,均能达到90%以上。  相似文献   

11.
V/Ce共掺杂TiO2光催化降解甲醛的实验研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了不掺杂、V掺杂、Ce掺杂、V/Ce共掺杂纳米TiO2光催化剂,并将其分别负载于瓷砖上,利用X射线衍射分析(XRD)和扫描电镜分析(SEM)技术对薄膜样品的结构和形貌进行了表征。通过对甲醛的降解实验评价光催化剂的光催化活性。实验结果表明,光催化剂的负载量、共掺杂离子的掺杂量、掺杂配比、煅烧温度影响纳米TiO2的光催化活性。V/Ce共掺杂TiO2光催化剂产生了协同效应,其光催化活性优于纯TiO2和单掺杂TiO2样品。  相似文献   

12.
为了探究Ag/AgCl光催化薄膜在连续流状态下对有机污染物的光催化性能,采用连续沉积方法制备了Ag/AgCl改性碳纳米管(CNTs)薄膜,以亚甲基蓝为目标污染物,利用光化学过滤器对亚甲基蓝的光催化脱色效果进行了探究。结果表明,在900μW·cm-2光强下,Ag/AgCl-CNTs复合薄膜在连续流光催化体系中对10 mg·L-1的亚甲基蓝去除率可达90%,比传统序批式反应体系高出70%以上,说明连续流体系的对流传质效果明显优于序批式体系的扩散传质效果。同时,Ag/AgCl的沉积显著改善了CNTs薄膜的光催化脱色性能。在最佳实验条件下,Ag/AgCl改性后,复合薄膜的光催化脱色效果比CNTs薄膜提高了40%。Ag/AgCl-CNTs多功能复合薄膜体系具有光催化降解和膜分离以及减缓膜污染等多重特性。  相似文献   

13.
以醋酸锌和硝酸钇为原料,丙烯酰胺为单体,N,N’-亚甲基双丙烯酰胺为网络剂,过硫酸铵为引发剂,采用高分子网络凝胶法制备得到掺钇的ZnO纳米粉体。以甲基橙为目标降解物,考察了不同掺钇量的纳米ZnO的光催化性能。用X射线衍射仪、透射电镜、X射线能谱仪、比表面积与孔隙率分析仪等对其进行表征。结果表明,钇的掺入提高了ZnO的光催化活性,钇锌摩尔比为0.23%时光催化性能最好,高压汞灯下反应1 h,甲基橙的脱色率为94.5%,相比于未掺杂的ZnO提高了9.5%。  相似文献   

14.
用光催化氧化法处理垃圾渗滤液的实验研究   总被引:13,自引:1,他引:13  
以城市生活垃圾渗滤液作为研究对象,采用悬浮态半导体催化剂对渗滤液进行处理试验。研究了ZnO/Tio2复合半导体催化剂的催化活性,并研究了各种实验条件、影响因素及处理效果。研究表明,在一定的试验条件下,用ZnO/TiO2复合半导体催化剂处理城市垃圾渗滤液效果较好,可作为垃圾渗滤液的深度处理。同时得到光催化氧化法处理渗滤液的最佳试验参数。  相似文献   

15.
溶胶凝胶法制备磷钨酸掺杂TiO2薄膜及其光催化性能   总被引:1,自引:0,他引:1  
以钛酸四丁酯为前驱物,采用溶胶凝胶法制备了磷钨酸掺杂的二氧化钛薄膜。通过XRD、FT-TR对该薄膜进行了表征,研究了薄膜在对氯苯酚光降解中的催化活性。结果表明,当磷钨酸与二氧化钛摩尔比为0.01∶1、薄膜烧结温度600℃、对氯苯酚溶液浓度30 mg/L(pH=5)、光催化8 h的条件下,对氯苯酚的降解率超过90%,且薄膜可以重复使用。磷钨酸对二氧化钛的光催化活性具有明显的促进作用。  相似文献   

16.
溶胶凝胶法制备磷钨酸掺杂TiO2薄膜及其光催化性能   总被引:4,自引:0,他引:4  
以钛酸四丁酯为前驱物,采用溶胶凝胶法制备了磷钨酸掺杂的二氧化钛薄膜.通过XRD、FT-TR对该薄膜进行了表征,研究了薄膜在对氯苯酚光降解中的催化活性.结果表明,当磷钨酸与二氧化钛摩尔比为0.01:1、薄膜烧结温度600℃、对氯苯酚溶液浓度30 mg/L(pH=5)、光催化8 h的条件下,对氯苯酚的降解率超过90%,且薄膜可以重复使用.磷钨酸对二氧化钛的光催化活性具有明显的促进作用.  相似文献   

17.
TiO2薄膜光催化降解双酚A的研究   总被引:6,自引:0,他引:6  
采用sol-gel法制备TiO2薄膜。以该薄膜为催化剂,研究了在H2O2存在的条件下,对内分泌干扰物质双酚A的光催化降解反应。分别讨论了pH值、H2O2的加入量、双酚A的初始浓度以及光照时间对降解反应的影响。结果表明,在pH=4,30mg/L的H2O2中对初始浓度为50mg/L的双酚A溶液光照180min有较好的降解效果。  相似文献   

18.
采用溶胶凝胶法制备了不掺杂、V 掺杂、Ce掺杂、V/Ce共掺杂纳米TiO2光催化剂,并将其分别负载于瓷砖上,利用X射线衍射分析(XRD)和扫描电镜分析(SEM)技术对薄膜样品的结构和形貌进行了表征。通过对甲醛的降解实验评价光催化剂的光催化活性。实验结果表明,光催化剂的负载量、共掺杂离子的掺杂量、掺杂配比、煅烧温度影响纳米TiO2的光催化活性。V/Ce共掺杂TiO2光催化剂产生了协同效应,其光催化活性优于纯TiO2和单掺杂TiO2样品。  相似文献   

19.
为考察ZnO NPs粒径效应对人工湿地运行性能的影响,在进水COD约为216.00 mg·L-1、总氮约为11.10 mg·L-1和总磷约为3.84 mg·L-1的条件下连续运行126 d,对暴露于不同粒径ZnO NPs(10.00mg·L-1)的人工湿地脱氮除磷性能、填料渗透系数、胞外聚合物(extracellular polymeric substances,EPS)产量和特性以及微生物群落结构和多样性的变化进行了研究.结果表明:与对照组(未投加ZnONPs)相比,进水中投加15、50和90nm ZnO NPs后,人工湿地对COD的去除率分别下降了8.73%、7.55%和6.97%;氨氮和总氮的去除率分别下降了21.96%和10.95%、17.75%和10.00%以及15.34%和3.78%.高通量测序结果表明,ZnO NPs粒径越小,对硝化菌属Thauera的抑制作用越明显.投加Zn ONPs后,其释放的Zn2+会与水中磷酸盐结合生成磷酸锌等不溶物,同时会增加异养硝化菌Acinetobacter的相对丰度,从而导致总磷的去除率比对照组提高了42.49%~56.38%.此外,与对照组(97.18 mg·g-1)相比,投加15、50和90 nm的ZnO NPs后EPS的产量分别增加到212.97、156.30和128.53 mg·g-1.EPS分泌量的增大,导致填料渗透系数快速降低,在运行83 d后分别下降了71.17%、67.83%和37.50%.  相似文献   

20.
自行设计了气固相光催化实验系统。以铝材为担载体,TCM和TCE为模拟污染物,在常温,常压下,对辐射光源,气体相对湿度,污染物反应浓度等因素对TCM和TCE的光催化降解反应的影响进行了研究。结果表明,在研究所采用的实验条件下,辐射光源采用254nm时的降解效率要比采用365nm时高10%左右。气体相对湿度为40%时光催化降解效率最高;随着污染物反应浓度的增加,TCM的降解效率降低,而TCE的降解效率增加,初步的反应动力学研究结果表明,TCM和TCE在二氧化钛表面的光催化降解反应可采用Langmuir-Hinshelwood动力学方程来表征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号