首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
The research activities in the project Assessing the Influence of Real Releases on Explosions (AIRRE) included a unique series of large-scale explosion experiments with high-momentum jet releases directed into congested geometries with subsequent ignition. The primary objective for the AIRRE project was to gain improved understanding of the effect that realistic releases and turbulent flow conditions have on the consequences of accidental gas explosions in the petroleum industry. A secondary objective was to develop a methodology that can facilitate safe and optimal design of process facilities. This paper presents selected results from experiments involving ignition of a highly turbulent gas cloud, generated by a large-scale, pressurised release of natural gas. The paper gives an overview of the effect on maximum explosion overpressures of varying the ignition position relative to the release point of the jet and a congested region placed inside the flammable cloud, with either a high or a medium level of congestion. For two of the tests, involving a jet release and the medium congestion rig, the maximum overpressures significantly exceeded those obtained in a quiescent reference test. The paper presents detailed results for selected tests and discusses the effect of the initial flow field generated by realistic releases – including turbulence, net flow and concentration gradients – on relevant explosion phenomena.  相似文献   

2.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

3.
A series of large-scale field trials to better understand the explosion characteristics of silane–air was conducted by the G-13 Silane Task Group under the direction of the Compressed Gas Association (CGA) and its guidelines. Silane was released from a high-pressure source into the open atmosphere, and overpressure measurements of unconfined silane–air explosions were taken at different locations away from the explosion centre. It was found that significant blast effects can result from relatively small releases of silane (around 0.1 kg). It is possible to achieve these small releases during an accidental discharge from a “pigtail” connection (a small-diameter coiled tube that connects a silane tube trailer to a process). Therefore, accidental silane explosions should be recognized as significant and possible events when handling silane. These results were also used in the proposed revision of ANSI/CGA G-13 Storage and Handling of Silane and Silane Mixtures.  相似文献   

4.
利用球型容器与管道组合,开展连通容器气体爆炸与泄爆实验,分析连通条件下,火焰在管道中的传播过程及其对起爆容器和传爆容器的压力影响。实验结果表明:连通容器气体爆炸中,火焰从起爆容器到传爆容器传播经历了一段不断加速,但加速度不断减小的过程;泄爆过程中,火焰传播过程与密闭爆炸时基本一致。管道中火焰加速传播,使得传爆容器的爆炸压力和强度相较于作为起爆容器时均明显增加,危险更大,采用与起爆容器相同的泄爆面积,无法满足对连通容器中传爆容器的泄爆。同时,泄爆是一个快速的能量泄放过程应选择合理的泄爆方式,防止二次危害。  相似文献   

5.
为了减少管内气体爆炸造成的损失与破坏,基于大涡模拟LES模型和Zimont燃烧模型,研究泄爆尺寸(直径为40,60,80 mm)和泄爆位置(侧方距点火端1,3,5 m)等泄爆条件对受限空间中氢气燃爆特性的影响。研究结果表明:大孔径泄爆口更好的排放效果造成火焰锋面在通过泄爆口时发生严重畸变,而泄爆口与点火端距离的增加则会削弱火焰锋面畸变的程度,且不同尺寸泄爆口产生的泄压效果差异较大。因此,应考虑将合适尺寸的泄爆口设置于靠近易燃点处。通过探索不同泄爆孔径与泄爆口位置对氢气火焰传播的影响规律,可为实际应用中的安全泄爆起到指导性作用。  相似文献   

6.
Duct vented geometries are a common feature in modern industrial installations where a vessel is protected from internal explosion pressures, and where the explosion products need to be directed away from sensitive areas. In this research, stratified propane–air concentrations have been investigated using a vented vessel connected to a vent pipe. Concentration, injection position and ignition position were varied and comparisons made with homogeneous tests at the same ‘global concentration’ for each condition. The maximum pressures produced by the worst case stratified mixture were only about a quarter of the maximum produced by the worst case homogeneous mixtures. However, for lean concentrations, stratified mixtures were shown to produce consistently greater pressures than the equivalent homogeneous case, irrespective of ignition position. In addition, results are presented which demonstrate that end ignition appears to be more severe than central ignition, contrary to what is reported in literature.  相似文献   

7.
Explosion venting is widely applied in industrial explosion-proof designs due to the convenient, economical and practical features of this method. Natural gas is usually stored in storage tanks. If the gas in the vessel is mixed with air and encounters an ignition source, explosion venting might occur, producing jet fire, generating new secondary derivative accidents and causing casualties and property losses. In this paper, a set of test platforms including wire-mesh suppression devices is established to study the inhibition of jet fire induced by explosion venting by wire mesh. The experimental research shows that a wire mesh significantly inhibits the jet fire induced by explosion venting. The flame propagation velocity and pressure clearly decrease with increasing numbers of wire-mesh layers. The wire-mesh structure significantly affects the flame propagation, and the more layers of mesh there are, the better the suppression effect is. The flame temperature gradually decreases with the addition of the wire mesh. The mesh size significantly affects the pressure propagation of explosion venting. The explosion pressure gradually decreases with the addition of the wire mesh. With increasing distance between the wire mesh and the explosion vent, the maximum temperature first increases and then decreases, and the maximum explosion pressure first decreases and then increases. In the case of single gas cloud, the flame suppression effect is the most obvious when the wire mesh is 0.2 m away from the explosion vent. In the case of double gas clouds, the flame suppression effect is the most significant when the distance between the wire mesh and the first gas cloud is 0.4 m.  相似文献   

8.
硅烷的危险特性及安全操作   总被引:2,自引:0,他引:2  
硅烷作为一种提供硅组分的气体源 ,广泛应用于微电子、光电器件以及高纯度多晶硅生产 ,潜在应用前景更为广阔。随着硅烷应用领域的扩大 ,硅烷安全使用和处理已成为首要的问题。通过对硅烷着火的研究和事故分析表明 ,硅烷的危险特性在于它与氧反应的极强活性 :自燃 ,着火下限低 ,燃烧能量大。由于硅烷的自燃特性 ,对它的安全防范 ,与一般的易燃易爆物质相比 ,除一些共同点之外 ,还有显著的不同之处。在操作中必须预防高浓度硅烷与氧接触发生自燃着火。同时还必须防止硅烷泄漏在有限的空间内与氧混合 ,形成不稳定爆炸性气团。笔者综合分析和研讨了硅烷着火和爆炸的最新进展和成果 ,在实践经验和分析典型硅烷事故的基础上 ,提出了处理和使用硅烷的安全操作要点。  相似文献   

9.
The ignition of a combustible environment by hot jets is a safety concern in many industries. In explosion protection concepts, for a protection of the type “flameproof enclosures” a maximum permissible gap is of major importance. In this work a numerical framework is described to investigate the ignition processes by a hot turbulent jet which flows out from such gaps. A Probability Density Function (PDF) method in conjunction with a reaction-diffusion manifold (REDIM) technique is used to model the turbulent reactive flow. In this paper the ignition of a stoichiometric mixture of hydrogen/air gas by a hot exhaust turbulent jet is examined. The impact of the nozzle diameter on the ignition delay time is investigated, too. The method is used to explore the maximum nozzle diameter for specific boundary conditions for which there is no ignition.  相似文献   

10.
A set of 34 experiments on vented hydrocarbon–air and hydrogen–air deflagrations in unobstructed enclosures of volume up to 4000 m3 was processed with use of the advanced lumped parameter approach. Reasonable compliance between calculated pressure–time curves and experimental pressure traces is demonstrated for different explosion conditions, including high, moderate, low and extremely low reduced overpressures in enclosures of different shape (Lmax:Lmin up to 6:1) with different type and position of the ignition source relative to the vent, for near-stoichiometric air mixtures of acetone, methane, natural gas and propane, as well as for lean and stoichiometric hydrogen–air mixtures. New data were obtained on flame stretch for vented deflagrations.The fundamental Le Chatelier–Brown principle analog for vented deflagrations has been considered in detail and its universality has been confirmed. The importance of this principle for explosion safety engineering has been emphasized and proved by examples.A correlation for prediction of the deflagration–outflow interaction number, χ/μ, on enclosure scale, Bradley number and vent release pressure is suggested for unobstructed enclosures and a wide range of explosion conditions. Fractal theory has been employed to verify the universality of the dependence revealed of the deflagration–outflow interaction number on enclosure scale.In spite of differences between the thermodynamic and kinetic parameters of hydrocarbon–air and hydrogen–air systems, they both obey the same general regularities for vented deflagrations, including the Le Chatelier–Brown principle analog and the correlation for deflagration–outflow interaction number.  相似文献   

11.
The structure of the steady planar detonation wave is analyzed for three-step chain-branching kinetics consistent with hydrogen–air chemistry. The initiation and chain-branching steps are described by an Arrhenius rate. Both are thermally neutral, so that heat release is due to termination. The initiation rate is typically very low and very stiff. As a result, a small fraction of the reactant is consumed in the initiation region, which is very long but ends in an exponential chain-branching explosion. Next, the reactant is rapidly converted into chain-branching radicals, within a very thin zone, which ends when the concentration of the chain-branching radical reaches a peak, because of reactant depletion. Finally, the termination step consumes the chain-branching radicals and releases heat within a region thicker than the peak zone, but much thinner than the initiation region. The analysis is based upon two assumptions: that the chain-branching activation energy is high and that initiation is slow. The structure of the initiation and chain-branching zones is different for post-shock states within or outside the explosion region in the chain-branching diagram. In the former situation, chain-branching is already stronger than termination at the von Neumann point, and vice versa. In the no-explosion case, the initiation zone becomes very long, while the little chain-branching specie produced by initiation is directly converted into product by the termination step. Temperature increases slowly until reaching the explosion curve, when chain-branching becomes stronger than termination. The subsequent structure is similar to the explosion case.  相似文献   

12.
Experiments of explosion venting in different conditions were performed in a cylindrical vessel with a vent duct; the pressure-time profiles from four transducers mounted in the line-of-sight centerline outside the vessel and the clear sequential shadowgraphs of external venting flow field taken by a high-speed shadowgraph imaging system were obtained. Based on these results, the characteristics of the external pressure field during venting were discussed systematically to explain the generation mechanism of the secondary explosion. In addition, the variations of the intensity of the secondary explosion in different venting conditions, namely the failure pressure, ignition location, area blockage ratio or equivalence ratio of the fuel, were also analyzed in detail.  相似文献   

13.
加气站压缩机间气体爆炸数值模拟研究   总被引:1,自引:0,他引:1  
加气站压缩机间安全设计时,需要评估内部气体爆炸危害,确定爆炸能量和影响因素。采用CFD技术,建立加气站压缩机间三维模型,模拟不同点火源位置、泄压板不同泄压压力和重量下,压缩机间气体爆炸时的爆炸压力及火焰传播行为。结果表明点火源位置以及泄压参数是影响加气站压缩机间气体爆炸的重要因素;点火源位置距离压缩机间放空位置越近,爆炸压力越小;对于泄压参数,爆炸压力与泄压板开启压力和重量之间均为正比关系。为减缓压缩机间内的气体爆炸危害,需要合理布置点火源位置,选择容重轻、泄压压力小的泄压材料,并同时需要考虑爆炸导致的物体破碎危害以及火焰次生灾害。  相似文献   

14.
Explosion pressures are determined for rich methane–air mixtures at initial pressures up to 30 bar and at ambient temperature. The experiments are performed in a closed spherical vessel with an internal diameter of 20 cm. Four different igniter positions were used along the vertical axis of the spherical vessel, namely at 1, 6, 11 and 18 cm from the bottom of the vessel. At high initial pressures and central ignition a sharp decrease in explosion pressures is found upon enriching the mixture, leading to a concentration range with seemingly low explosion pressures. It is found that lowering the ignition source substantially increases the explosion pressure for mixtures inside this concentration range, thereby implying that central ignition is unsuitable to determine the explosion pressure for mixtures approaching the flammability limits.  相似文献   

15.
为得到侧部点式排烟模式隧道火灾临界风速无量纲计算式,针对隧道侧部点式排烟模式,根据π定理和相似理论,采用量纲分析方法分析影响临界风速的相关因素,推导出影响临界风速3个因素的无量纲函数关系式;采用数值模拟方法,确定临界风速与火灾热释放速率、排烟量、排烟口距火源距离的量化关系.研究结果表明:当无量纲排烟口距火源距离小于2....  相似文献   

16.
Dust explosion venting experiments were performed using a 20-L spherical chamber at elevated static activation overpressures larger than 1 bar. Lycopodium dust samples with mean diameter of 70 μm and electric igniters with 0.5 KJ ignition energy were used in the experiments. Explosion overpressures in the chamber and flame appearances near the vent were recorded simultaneously. The results indicated that the flame appeared as the under-expanded free jet with shock diamonds, when the overpressure in the chamber was larger than the critical pressure during the venting process. The flame appeared as the normal constant-pressure combustion when the pressure venting process finished. Three types of venting processes were concluded in the experiments: no secondary flame and no secondary explosion, secondary flame, secondary explosion. The occurrence of the secondary explosions near the vent was related to the vent diameter and the static activation overpressure. Larger diameters and lower static activation overpressures were beneficial to the occurrence of the secondary explosions. In current experiments, the secondary explosions only occurred at the following combinations of the vent diameter and the static activation overpressure: 40 mm and 1.2 bar, 60 mm and 1.2 bar, 60 mm and 1.8 bar.  相似文献   

17.
The safe operation of hydrocarbon liquid-phase oxidation by air or oxygen requires the knowledge on the flammability of hydrocarbon/oxygen mixtures in both the vapor space and vapor bubbles. The latter is of particular importance in situation where pure oxygen is used as the oxidant as most bubbles are expected to be flammable and explosive. New experimental findings are presented for ignition and explosion in cyclohexane liquid under oxygen oxidation conditions. A bubble column is constructed and fitted with multiple igniters. Experiments were performed at liquid temperatures between 373.15 and 423.15 K under various flow rates of pure oxygen. Two drastic different ignition and explosion behaviors were observed. The first is a typical bubble explosion from the direct ignition of the flammable bubbles in the liquid. The explosion occurs immediate following the ignition and do not produce significant energy that endanger the system. The other is a remote, delayed ignition and explosion in the vapor space that can produce significant overpressure and endanger the system. The explosion is attributed to the ignition of flammable vapor space by active free radicals from cyclohexyl hydroperoxide decomposition. A mechanism is proposed for the remote, delayed ignition to occur in the oxidation system. It is concluded that explosion in an oxidizing, bubbly liquid is not only a likely scenario but also a severe scenario, and cyclohexane oxidation should not be carried out directly with pure oxygen and without any inerting.  相似文献   

18.
The thermal explosion problem of cumene hydroperoxide exothermic reaction which is used in chemical industries for production of some chemical materials is investigated. The analytical solutions of the problem to determine the margin between ignition and non-ignition systems are presented. The solution offers different analytical expressions which relate between the critical parameters for both steady and unsteady-states in different planes of solutions for different cases. The numerical solutions in different planes offer different trajectories of solution as sub-critical (non-ignition) and supercritical (ignition). Also from the numerical solution the relations between the critical parameters are presented. The critical behaviors from both analytical and numerical solutions are concise and pertained the same results.  相似文献   

19.
A typical building consists of a number of rooms; often with windows of different size and failure pressure and obstructions in the form of furniture and décor, separated by partition walls with interconnecting doorways. Consequently, the maximum pressure developed in a gas explosion would be dependent upon the individual characteristics of the building. In this research, a large-scale experimental programme has been undertaken at the DNV GL Spadeadam Test Site to determine the effects of vent size and congestion on vented gas explosions. Thirty-eight stoichiometric natural gas/air explosions were carried out in a 182 m3 explosion chamber of L/D = 2 and KA = 1, 2, 4 and 9. Congestion was varied by placing a number of 180 mm diameter polyethylene pipes within the explosion chamber, providing a volume congestion between 0 and 5% and cross-sectional area blockages ranging between 0 and 40%. The series of tests produced peak explosion overpressures of between 70 mbar and 3.7 bar with corresponding maximum flame speeds in the range 35–395 m/s at a distance of 7 m from the ignition point. The experiments demonstrated that it is possible to generate overpressures greater than 200 mbar with volume blockages of as little as 0.57%, if there is not sufficient outflow through the inadvertent venting process. The size and failure pressure of potential vent openings, and the degree of congestion within a building, are key factors in whether or not a building will sustain structural damage following a gas explosion. Given that the average volume blockage in a room in a UK inhabited building is in the order of 17%, it is clear that without the use of large windows of low failure pressure, buildings will continue to be susceptible to significant structural damage during an accidental gas explosion.  相似文献   

20.
为确保隧道火灾时人行疏散通道安全性,通过在人行疏散通道两端设置独立机械加压送风系统,使疏散通道保持正压状态,防止烟气侵入。利用风速法计算疏散通道加压送风量,利用FDS软件模拟计算单侧及双侧2种送风方式下隧道内烟气蔓延范围、疏散口及疏散通道气流速率分布情况。结果表明:对疏散通道加压送风时,应重点分析火源附近150 m范围内疏散口气流速率是否符合规范要求;当开启疏散口数量≤10时,采用单侧或双侧送风方式对疏散通道加压送风,疏散口稳定时气流速率均符合规范要求;采用双侧送风方式疏散口气流速率分布规律较优,确保加压送风系统适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号