首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Fugitive emissions are among the major concerns of industrial process releases. The emissions cause problem to various aspects including the environment, health, and economic. Early evaluation of process hazards is beneficial because process can be made inherently benign at lower cost. This paper discusses two important aspects of fugitive emissions assessment during process design – the quantification and the prevention strategies.For the quantification part, three methods are presented for fugitive emissions estimation during the process design. They are tailored to data available in simple process flow diagram (PFD), detailed PFD, and piping & instrumentation diagram (PID). Such methods are needed as early emissions estimation allows production routes and process designs with lower emissions to be selected. The fugitive emissions estimation and methods to abatement are demonstrated on a benzene process case study. Valves are found to be the major emission source with 50% of fugitive emissions of process area in a base case of petrochemical process, in which no fugitive emission reductions are yet made. Pumps without mechanical seals come second with 30% and flanges with 8% of emissions. Inherently safer design keywords can be applied to prevent fugitive emissions in the process plants. Substitution is the most applicable keyword in fugitive emission reduction of existing plants.The emission rate calculations together with estimation of health risk give a sound background for the decision making on elimination of emissions at source through equipment and piping changes. The case study presented reveals that by substituting emission prone components by inherently low-leaking ones, the plant emissions can be reduced over 90% in practice. This is created mainly by replacing rising stem valves with ball valves, installing double mechanical pump seals or hermetic pumps and making changes in sampling and relief systems. Ideally by also changing flanges to welded connections, which is not viable for various reasons, the emissions could be reduced nearly to zero.  相似文献   

2.
Each year more people die from diseases caused by work than are killed in industrial accidents. Therefore, methods are needed to evaluate occupational health hazards as early as possible when the process is still under development. A method for estimating inhalative exposures and risks in petrochemical and related plants is presented. The method is simple and suffices with the limited data availability during the early design stages.The steps of the method, which utilizes preliminary process flow diagrams are as follows: first the fugitive emissions and process plot areas are estimated based on precalculated process modules representing the typical process sections (such as a distillation unit). Chemical concentration in the air is then calculated based on the wind velocity probability and the estimated process cross-sectional area. For this purpose a typical wind velocity distribution in the area is used. The worker risk of exposure to chemicals is evaluated either based on the concentration in air by using the hazard quotient method or calculating the carcinogenic chemicals intake and the resulting risk of cancer. The values are compared to the benchmarks.As a result the process route health characteristics such as fugitive emissions rate, critical wind speed, chemical concentration in air and intake amount as well as the corresponding risk of exposure are produced. By using statistical meteorological data, health risks of occupational exposure can be estimated more realistically as probabilities. The approach is capable of comparing alternative processes to select the concept which is inherently occupationally healthier. Using this method, the exposure problems of a process can be identified earlier and proper decisions can be made early in process development or predesign stage.The concentration-based method is demonstrated by a case study of six competing manufacturing routes for methyl methacrylate (MMA). The C3 is found to be the most harmful alternative to health. Both concentration-based and intake-based methods are applied. The study indicates that the intake-based risk estimation benchmark is stricter than the exposure limit-based benchmark for carcinogens.  相似文献   

3.
Fugitive emissions are not an environmental concern alone, but are also a health concern. From occupational health standpoint, fugitive emissions are the main sources of origin of the continuous exposure to workers. Operating plants regularly measure release and concentration levels through a plant-monitoring program. However, for processes which are still ‘on paper’, predictive estimation methods are required. Therefore, three methods for estimating concentration of the fugitive emissions are presented for the process development and design phases of petrochemical processes. The methods estimate the fugitive emission rates and plant plot dimensions resulting to fugitive emission concentrations. The methods were developed for the type and amount of information available in three process design stages; conceptual design, preliminary process design, and detailed process design. The methods are applied on a real benzene plant; the estimated benzene concentrations are compared to the actual concentration measured at the plant. The results show that as the information mounts up during design, the concentration estimate becomes more accurate. The results indicate that the methods presented provide simple estimates of fugitive emission-based concentrations during the design stages.  相似文献   

4.
The concept of inherently safer design was introduced to design a fundamentally safer process so that hazards can be avoided or minimized rather than controlled or managed. The ideology has later been extended to the environmental, but not health criteria due to its complicated underlying principles. Even though health risk methods are already established, majority are for existing plants assessment. Early consideration of health aspect starting from process design stage however, has received much less attention. This paper introduces a simple graphical method to evaluate the inherent occupational health hazards of chemical processes during the R&D stage. A survey was conducted to identify the important health parameters for the graphical method development, involving nine world inherent safety and health experts. Based on their input, process mode, material volatility, operating pressure and chemical health hazard (toxicity and adverse effect) are the significant factors affecting inherent health hazards of chemical processes. The choice of parameters was bounded by the information availability at this stage. The method was applied on six routes to methyl methacrylate and ten routes to acetic acid. The parameters were plotted for each subprocess of the alternative routes. The ‘healthiest’ route was selected based on thorough hazards assessment across all the subprocesses. The first case study reveals the tertiary butyl alcohol as the ‘healthiest’ one as it poses relatively lower, or at least comparable hazards to the other routes due to exposure and health impacts. Meanwhile the acetic acid case study indicates ethanol oxide and ethyl oxide based routes as the inherently healthier as they operate at lower operating pressure besides posing comparable hazards level for the other three parameters, compared to the other routes. The case studies show that the inherent occupational health of a chemical process can already be evaluated easily in the R&D stage with the simple graphical method proposed.  相似文献   

5.
Over the last few decades, the concept of inherent occupational health has gained increasing attention to reduce occupational hazards that may adversely impact workers’ health. In order to assess occupational hazards in the chemical process, different inherent occupational health assessment methods have been developed at the early stages of process development and design. The methods in the order of process information availability – ranging from the detailed piping and instrumentation diagrams to a simple sketch of process concepts are the: occupational health index (OHI), health quotient index (HQI) and inherent occupational health index (IOHI). This paper proposes systematic heuristic frameworks to assist process designers and engineers in assessing and reducing inherent occupational health hazards or risks based on process information availability. Strategies for reducing health hazards or risks in the OHI, HQI and IOHI methods based on inherently safer design (ISD) keywords of minimization, substitution, moderation and simplification are included in this study. It is worth mentioning that the proposed frameworks act as guidelines for design engineers in systematically selecting the appropriate index and methodology to assess and reduce health hazards/risks based on the availability of the process information. A case study is solved to illustrate the proposed framework.  相似文献   

6.
7.
The lack of formal integration between process design stages with risk and consequence estimation is a hurdle to designing inherently safe process plants. Conventional risk assessment methodologies are often not carried out concurrently with process design. Therefore, process designers lack the information about risk levels and consequence that may result from the process conditions being considered in a particular process route until the design is completed. Hence, effects of changes in process conditions on risk levels and consequence cannot be studied in a time effective manner during the design stages. Few studies have been identified on the possibility and viability of integrating risk estimation with process design. But viable framework and methodology for doing so has not yet been reported. This paper presents a feasible framework in which risk and consequences estimation can be part of design stages. A demonstrative tool named as integrated risk estimation tool (iRET) was developed by using process simulation software, HYSYS and spreadsheet, MS Excel as the platforms. iRET estimates risk due to explosions by using TNT equivalence method and the TNO correlation method. iRET has a potential to be extended to include all forms of risk such as fire, explosion, toxic gas releases and boiling liquid expanding vapour explosion (BLEVE). The paper also presents case studies to demonstrate the functionality and viability of using iRET in conjunction with process design. The results of these case studies have successfully shown that the risk due to explosion can be assessed during the initial design stage ensuring a safer plant. The framework and iRET there by presented here provide systematic methodology and technology to design inherently safer plants.  相似文献   

8.
Occupational health studies the interaction of work and health, especially the long-term effect of chemicals to health. In this paper an Inherent Occupational Health Index has been developed for assessing the health risks of process routes during process research and development stage. The method takes into account both the hazard from the chemicals present and the potential for the exposure of workers to the chemicals. The index can be used either for determining the level of inherent occupational health hazards or comparing alternative process routes for these risks. The method is tailored for the process research and development stage by including only such properties of chemicals and operating conditions of process, which are available already in this early stage. In the end of this paper the approach is demonstrated by comparing the inherent occupational healthiness of six methyl methacrylate process routes using three different types of index calculations; additive-type, average-type, and worst case-type. The study discloses that the average- and worst case-based approaches analyze the characteristics of a route better than the additive calculation, which is greatly affected by the number of steps in the route. A quantitative standard scale for the index is also developed to allow health level assessment of a single process.  相似文献   

9.
Petrochemical facilities and plants require essential ongoing maintenance to ensure high levels of reliability and safety. A risk-based maintenance (RBM) strategy is a useful tool to design a cost-effective maintenance schedule; its objective is to reduce overall risk in the operating facility. In risk assessment of a failure scenario, consequences often have three key features: personnel safety effect, environmental threat and economic loss. In this paper, to quantify the severity of personnel injury and environmental pollution, a failure modes and effects analysis (FMEA) method is developed using subjective information derived from domain experts. On the basis of failure probability and consequence analysis, the risk is calculated and compared against the known acceptable risk criteria. To facilitate the comparison, a risk index is introduced, and weight factors are determined by an analytic hierarchy process. Finally, the appropriate maintenance tasks are scheduled under the risk constraints. A case study of a continuous catalytic reforming plant is used to illustrate the proposed approach. The results indicate that FMEA is helpful to identify critical facilities; the RBM strategy can increase the reliability of high-risk facilities, and corrective maintenance is the preferred approach for low-risk facilities to reduce maintenance expenditure.  相似文献   

10.
Recently production of hydrogen from water through the Cu–Cl thermochemical cycle is developed as a new technology. The main advantages of this technology over existing ones are higher efficiency, lower costs, lower environmental impact and reduced greenhouse gas emissions. Considering these advantages, the usage of this technology in new industries such as nuclear and oil is increasingly developed. Due to hazards involved in hydrogen production, design and implementation of hydrogen plants require provisions for safety, reliability and risk assessment. However, very little research is done from safety point of view. This paper introduces fault semantic network (FSN) as a novel method for fault diagnosis and fault propagation analysis by using evolutionary techniques like genetic programming (GP) and neural networks (NN), to uncover process variables’ interactions. The effectiveness, feasibility and robustness of the proposed method are demonstrated on simulated data obtained from the simulation of hydrogen production process in Aspen HYSYS®. The proposed method has successfully achieved reasonable detection and prediction of non-linear interaction patterns among process variables.  相似文献   

11.
Each year more people die from work-related diseases than are killed in industrial accidents. Therefore it is essential to evaluate occupational health aspect during the process design. Early evaluation of safety, health, and environmental (SHE) performance is advantageous, since the opportunities to make the process inherently benign are greater and the cost therefore lower. The methods for occupational health assessments need to be tailored to specific design stages, since the data availability is changing as the design proceeds. In this paper, an index-based method called the Occupational Health Index (OHI) is presented for the basic engineering stage. The OHI is the final of the three methods in series proposed for health assessment in development and design stages. The OHI is based on the information available in piping and instrumentation diagrams (PIDs) and the plot plan. Four health aspects are considered; chronic inhalation risks to noncarcinogens and carcinogens, acute inhalation risk, and dermal/eye risk. The index is demonstrated on separation system of a toluene hydrodealkylation process. The assessment results allow the level of occupational health risks to be evaluated, the sources of exposures be detected, and corrective actions taken in a focused way.  相似文献   

12.
The growing scale and complexity of process industries have brought safety, health, and environmental issues to the forefront. As a result, proactive risk reduction strategies (RRSs) are commonly employed to address these issues by reducing the frequency or mitigating the consequences of potential incidents. Among these strategies, inherent safety, which is a proactive measure of loss prevention and risk management, is considered to be the most effective method. This review aims to provide a comprehensive analysis of RRSs for achieving inherency, as well as techniques for evaluating the performance of inherent safety, health, and environmental aspects. Background information is presented, including the development and implementation of the inherently safer process design, as well as the approaches for achieving inherently healthier and environmentally friendlier processes. Subsequently, the execution approaches and practical applications of other RRSs are discussed to highlight the distinctiveness and benefits of inherent safety. Next, this study examined the characteristics of inherency assessment tools (IATs) based on available information at different process stages. Furthermore, the evaluation methods and historical development of IATs are investigated from the perspectives of safety, occupational health, and environmental considerations, followed by a statistical analysis of IATs. It is concluded that the no-chemical hazards-based IATs have not been extensively studied yet, which may improve the safety level of process plants from the perspective of comprehensive inherency risk reduction. As a way forward, future research opportunities are proposed to promote the implementation of greater optimized risk management.  相似文献   

13.
It is generally acknowledged that there are substantial uncertainties present in any analysis of risk. This paper provides a brief overview of the current techniques used for uncertainty analyses, and highlights their inappropriateness for practical use in the complete risk assessment process. The concept of fuzzy sets as a means for quantifying uncertainty is introduced and a case study demonstrates the application of this method to a simple consequence analysis where parameter uncertainty is considered. The results of this fuzzy analysis are compared with those of a more traditional probabilistic approach using a Monte Carlo simulation. This comparison demonstrates that the novel approach of fuzzy sets is a more appropriate technique due to its non-statistical nature and that the amount of computation required is substantially reduced compared to the traditional probabilistic approach. The versatility of fuzzy set theory suggests that this approach could also be used to quantify other types of uncertainty present in the risk assessment process, including model uncertainty and expert opinion.  相似文献   

14.
Quantitative Risk Assessment (QRA) has been a very popular and useful methodology which is widely accepted by the industry over the past few decades. QRA is typically carried out at a stage where complete plant has been designed and sited. At that time, the opportunity to include inherent safety design features is limited and may incur higher cost. This paper proposes a new concept to evaluate risk inherent to a process owing to the chemical it uses and the process conditions. The risk assessment tool is integrated with process design simulator (HYSYS) to provide necessary process data as early as the initial design stages, where modifications based on inherent safety principles can still be incorporated to enhance the process safety of the plant. The risk assessment tool consists of two components which calculate the probability and the consequences relating to possible risk due to major accidents. A case study on the potential explosion due to the release of flammable material demonstrates that the tool is capable to identify potential high risk of process streams. Further improvement of the process design is possible by applying inherent safety principles to make the process under consideration inherently safer. Since this tool is fully integrated with HYSYS, re-evaluation of the inherent risk takes very little time and effort. The new tool addresses the lack of systematic methodology and technology, which is one of the barriers to designing inherently safer plants.  相似文献   

15.
This paper provides a risk assessment method of sheltering in-place for high-pressure natural gas wells with hydrogen sulphide. In this paper, the shelter-in-place risk is estimated by integrating the health consequences of an individual taking one kind of emergency response to the emergency orders of sheltering in place from the emergency decision makers and the probability of the corresponding emergency response action. The probability of the corresponding emergency response action in the proposed method is estimated through the accident probability analysis and the probability analysis of taking a certain response action. The health consequence estimation is based on air exchange rate test of the shelter buildings as well as accident consequence calculation. The evaluation of shelter-in-place risks based on “as low as reasonably practicable (ALARP)” guidelines was employed to provide suggestions for emergency management under both normal conditions and off normal conditions. A case study of risk assessment of sheltering in the local residential houses in Xuanhan County of Sichuan Province, China was taken as an example to illustrate the proposed risk assessment process of shelter-in-place and its application in the decision-making process for emergency management.  相似文献   

16.
陕京二线输气管道风险预评价   总被引:1,自引:0,他引:1  
采用EST法对建设中的陕京二线输气管道进行了风险评价,得到了管道的高风险区段.通过对评价结果的分析,得出了造成各管段风险值较高的原因,并提出了相应控制措施.  相似文献   

17.
At preliminary design stage, process designers normally lack of information on the risk level from process plant. An inherently safer process plant could be designed if the information of risk levels could be known earlier at the preliminary design stage. If the risk level could be determined, there is a possibility to eliminate or reduce the risk by applying the well-known concept: inherent safety principle. This paper presents a technique to determine the risk levels at preliminary process design stage using a 2-region risk matrix concept. A model to calculate the severity and likelihood of a toxic release accident was developed in Microsoft Excel spreadsheet. This model is integrated with process design simulator, iCON to allow for data transfer during preliminary design stage. 2-region risk matrix is proposed and used to evaluate the acceptability of the inherent risk based on the severity and likelihood rating. If the inherent risk level is unacceptable, modification for improvement can be done using the inherent safety principles. A case study has been carried out to illustrate the benefit of applying this newly developed technique. It was successfully shown that an inherently safer plant could easily be designed by applying this technique.  相似文献   

18.
Each year more people die from occupational related diseases than are killed in industrial accidents. Therefore it is critical to start considering health aspect early when developing a new chemical process. In this paper, a computer-aided tool for assessing inherent occupational health is proposed for chemical process research and development stage. The method was developed based on the reaction chemistry data, which is the only data available at this stage. Three types of approaches were formulated to calculate the route index value using additive type, average type and worst case type calculations. The tool can be used to rank the alternative chemical synthesis routes by their health properties as well as characterize the hazard level of single process. Finally the tool was applied to six process routes for methyl methacrylate production for demonstration. The case study revealed hazards of the processes from different perspectives, e.g. the results from the additive-type calculation were mainly affected by the total number of steps in the route, which indicates the impact of process complexity on the level of hazard. The introduction of such tool provides a swift yet reliable means that will encourage health criteria to be considered earlier in process development besides economic, safety and environment.  相似文献   

19.
为降低危化品相关的化工事故造成的人员伤亡和财产损失,以化工多米诺事故为研究对象,探讨由初始事故引发1个或多个次生事故的连锁反应机理与风险评估方法。提出应用蒙特卡洛模拟对多米诺事故风险进行动态量化的方法,梳理化工多米诺事故风险的识别、分析、评定、处理全周期管理流程,并以1个天然气压气站为案例,验证基于蒙卡模拟的化工多米诺事故风险量化方法的有效性。结果表明:该方法可以更准确地对化工多米诺事故风险进行定量评估。多米诺事故风险全周期管理流程的梳理能够有效指导化工企业开展安全管理、事故预防等工作。  相似文献   

20.
以某年产25万吨大型碳化硅园区无组织排放面源为例,提出基于多个地面站气象数据的CALPUFF模型地面浓度反推方法,优化流场模拟,使得无组织面源源强核算结果更加准确,并以环境保护目标空气质量达标为原则,核算其大气污染物减排指标,得出具体结论:园区大气污染物SO2、NOX、CO、PM10年排放量分别为449.06t、86.98t、5158.58t、115.06t;无组织排放SO2、CO及PM10的减排比例分别为63.5%、19.2%、42.44%,对应减排量分别为285.16 t/a、990.45 t/a、48.83 t/a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号