首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper introduces the procedures of developing a computer software—CASEHAT (Computer Aided Semiconductor Equipment Hazard Analysis Tool) that can facilitate different hazard analysis works for semiconductor manufacturing processes. The CASEHAT software is composed of three major parts: the material, the equipment, and the regulation database and they were connected through the ‘correlated linkage’ technique of the Microsoft Access and the VBA programming language. This innovative software not only generates ordinary HAZOP study (HAZard and OPerability study) results but also acts as an inquiry tool during usual conditions or in case of emergency. It is foreseeable that CASEHAT has great potential to be used in place of the current HAZOP procedure eventually.  相似文献   

2.
Thermal runaway was studied in a continuous tubular pilot reactor under steady-state regime. Different accident scenarii were conducted by making some errors on reactant concentrations and/or temperature feed. To prevent thermal runaway, control by direct contact by solvent injection was used at different reactor locations. This injection allowed controlling the maximum reaction temperature. A simplified analytical method to estimate the maximum reaction temperature along the reactor was used.Benefit of this control method was the diminution of computational time. Furthermore, by injecting solvent to control maximum reaction temperature, there is no need to shut down the unit. The control method was validated experimentally.  相似文献   

3.
A quantitative variation of the hazard and operability analysis (HAZOP) procedure is demonstrated. The process is divided into sections and dynamic models of the separate sections are prepared. Those models are used in the framework of the HAZOP procedure to determine the magnitude of the deviations from normal operation conditions that may lead to serious accidents and to test design modification to improve the safety characteristic of the process. A process involving an exothermic reaction conducted in a semi-batch reactor is used to demonstrate the advantages of the proposed procedure and its application for safety education and operator training. The programs used for simulating the reactor are available at: ftp://ftp.bgu.ac.il/shacham/OctanoneProd/.

It is shown that the use of those programs can enhance considerably the safety education by providing tools for systematic screening of process deviation associated with possible hazardous events, determining the threshold values that may lead to such events and enabling the examination of a particular design for the adequate safe range of operation.  相似文献   


4.
有机过氧化物生产火灾爆炸危险性分析   总被引:6,自引:0,他引:6  
针对有机过氧化物自分解温度较低、反应过程易引发火灾爆炸等危险特性,采用危险与可操作分析(HAZOP)方法和事故树(FTA)分析对过氧化物生产过程中存在的火灾爆炸危险性进行分析.结果表明,有机过氧化物生产过程中低温的保证是关键,应对制冷系统进行故障类型及影响分析(FMEA),从而确保制冷系统安全可靠.  相似文献   

5.
基于HAZOP方法的加氢工艺自动化安全控制   总被引:3,自引:3,他引:0  
加氢工艺是国家安全生产监督管理总局首批重点监管的危险化工工艺之一,需要对其进行自动化安全控制。从反应物料、加氢反应等对加氢工艺过程的危险性进行了初步分析。基于HAZOP方法,以加氢反应器为分析对象,深入探讨了反应温度、压力、氢气流量、惰性气体、冷却水、搅拌等方面出现偏差的原因、后果及安全对策措施,这些偏差包括无、多、少。根据加氢工艺HAZOP分析结果,并且在对大量的涉及加氢工艺的化工企业实际调查研究的基础上,结合众多化工安全专家的实践经验,重点从流量、压力、温度等主要偏差提出了安装流量自动控制控制器、超压报警自动控制、超温报警自动控制、可燃气体浓度检测报警探头、搅拌器电流报警等自动化安全控制方案。  相似文献   

6.
基于动态SDG模型的间歇过程HAZOP方法研究   总被引:1,自引:0,他引:1  
危险与可操作性分析(HAZOP)是目前应用最为广泛的安全评价方法之一。然而,通过对国内外已实施的生产过程安全评价方法及相关计算机辅助安全评价软件调查发现,目前对间歇过程HAZOP分析的研究还较少。因此,将Petfi网与符号定向图(SDG)相结合,以SDG模型为主,Petri网模型为辅,建立专门针对间歇过程HAZOP分析的动态SDG模型。由于Petfi网可以准确描述间歇过程的离散事件特性,而SDG能够恰当描述间歇过程的连续特性,二者结合使该模型成为间歇过程HAZOP分析的有力工具。  相似文献   

7.
烷基苯联合装置含有国家安全监管总局首批重点监管的15种危险化工工艺中的加氢工艺、烷基化工艺两种,装置工艺介质为易燃、易爆、有毒及强腐蚀性物质,生产中潜在危险性较大;开展工艺风险研究,落实控制措施,对于提高装置本质安全性具有极为重要意义.首先探讨了工艺危险和要害部位,确认装置主要风险为火灾、爆炸和毒性危害;然后应用HAZOP方法,以加氢反应进料加热炉、烷基化反应器为分析对象,研究了工艺状态参数温度、压力、物料流量等方面出现偏差的原因、后果及安全措施;还对氢气泄漏发生火灾、爆炸和苯泄漏发生火灾、爆炸、人员中毒进行了事故后果定量分析,提出了相应的安全措施,以消除或降低工艺危险,保障装置安全.  相似文献   

8.
计算机辅助HAZOP技术的研究   总被引:1,自引:1,他引:0  
在HAZOP原理的基础上,讨论了计算机辅助HAZOP技术的优势,并针对传统的HAZOP、基于深层知识模型SDG的计算机辅助HAZOP和应用PHA-Pro软件3种方法进行了分析和比较;介绍了研发成功的针对开、停车过程和应急阶段顺序颠倒、操作步骤遗漏的人工误操作危险与可操作性分析系统MO-HAZOP;该系统具有定量计算出所有的人工误操作顺序组合的发生概率值,结合现有知识和专家经验,判定事件发生的风险等级,从而有重点地给出预防危险、保障生产安全的建议的功能;MO-HAZOP分析系统对于石化企业的安全生产具有重要意义。  相似文献   

9.
安全仪表系统等级划分与HAZOP分析的结合应用   总被引:7,自引:3,他引:4  
介绍了安全仪表等级的划分和HAZOP分析,并用此方法分析了苯酐装置。大多数现役或在建苯酐装置的氧化反应器存在较大的火灾、爆炸危险性,一旦在操作、控制和管理上稍有疏忽,就可能发生火灾、爆炸事故。HAZOP方法针对指定系统进行结构化和系统化的审查,辨识系统中潜在的危害和潜在操作问题,基于HAZOP给出安全仪表等级是今后安全设计的一条新路。  相似文献   

10.
This paper discusses the framework methodology behind the proposed simulation-based HAZOP tool. Simulation-based approach is one of the many ways to support conventional HAZOP by its automation. Compared to knowledge-based and other approaches, a HAZOP software tool based on deviations simulation is able to examine the investigated process more into detail and so find root causes of hazardous consequences. Another advantage is the ability to identify also potential hazards which did not occur in the past and might be overlooked. The presented framework methodology uses a layer of protection analysis (LOPA) concept of independent protection layers (IPLs) testing. Control system integrated into the raw process design represents the first of various protection layers of the LOPA concept. As a case study, a CSTR chemical production with nonlinear behavior under Proportional-Integral-Derivative (PID) actions as the predominant type of classical feedback control strategy is used. The presented tool identifies hazardous regimes under conditions when control loop introduces hazardous consequences or even acts synergically with existing hazardous events. Risk derived from different consequences is ranked by the risk assessment matrix (RAM) as a part of the conventional quantitative HAZOP study.  相似文献   

11.
Hazard and Operability (HAZOP) studies are conducted to identify and assess potential hazards which originate from processes, equipment, and process plants. These studies are human-centered processes that are time and labor-intensive. Also, extensive expertise and experience in the field of process safety engineering are required. There have been several attempts by different research groups to (semi-)automate HAZOP studies in the past. Within this research, a knowledge-based framework for the automatic generation of HAZOP worksheets was developed. Compared to other approaches, the focus is on representing semantic relationships between HAZOP relevant concepts under consideration of the degree of abstraction. In the course of this, expert knowledge from the process and plant safety (PPS) domain is embedded within the ontological model. Based on that, a reasoning algorithm based on semantic reasoners is developed to identify hazards and operability issues in a HAZOP similar manner. An advantage of the proposed method is that by modeling causal relationships between HAZOP concepts, automatically generated but meaningless scenarios can be avoided. The results of the enhanced causation model are high quality extended HAZOP worksheets. The developed methodology is applied within a case study that involves a hexane storage tank. The quality and quantity of the automatically generated results agree with the original worksheets. Thus the ontology-based reasoning algorithm is well-suited to identify hazardous scenarios and operability issues. Node-based analyses involving multiple process units can also be carried out by a slight adjustment of the method. The presented method can help to support HAZOP study participants and non-experts in conducting HAZOP studies.  相似文献   

12.
Chemical reactors represent probably the most hazardous units of chemical industry. Safety analysis of a chemical reactor requires basic knowledge of all particular processes which can be described by mathematical models. Most of the model parameters involved in the prediction of reactor behavior are uncertain. These uncertainties can cause discrepancies mainly in the prediction by models with nonlinear behavior and they can be the source of confusion in the design of chemical reactors and consequently also in the safety and operability analysis.The main aim of this work was to analyze the influence of uncertainties in the model parameters on the prediction of operating quantities by mathematical models with nonlinear behavior. Such analysis can be used for safety and operability analysis of an industrial catalytic ammonia reactor. The industrial fixed-bed reactor was used by a mathematical model with nine parameters. Analyses of the influence of uncertainty in a single model parameter and their combination were carried out by the Monte Carlo approach. It is shown that even a small uncertainty in one of the key parameters or in a combination of these key parameters can result in several steady states results of the operating quantities and can be the source of confusion in the design and consequently also in the safety and operability analysis.  相似文献   

13.
An integrated approach for performance assessment and management of safety barriers in a systemic manner is needed concerning the prevention and mitigation of major accidents in chemical process industries. Particularly, the effects of safety barriers on system risk reduction should be assessed in a dynamic manner to support the decision-making on safety barrier establishments and improvements. A simulation approach, named Simulink-based Safety Barrier Modeling (SSBM), is proposed in this paper to conduct dynamic risk assessment of chemical facilities with the consideration of the degradation of safety barriers. The main functional features of the SSBM include i) the basic model structures of SSBM can be determined based on bow-tie diagrams, ii) multiple data (periodic proof test data, continuous condition-monitoring data, and accident precursor data) may be combined to update barrier failure probabilities and initiating event probabilities, iii) SSBM is able to handle uncertainty propagation in probabilistic risk assessment by using Monte Carlo simulations, and iv) cost-effectiveness analysis (CEA) and optimization algorithms are integrated to support the decision-making on safety barrier establishments and improvements. An illustrative case study is demonstrated to show the procedures of applying the SSBM on dynamic risk-informed safety barrier management and validate the feasibility of implementing the SSBM for cost-effective safety barrier optimization.  相似文献   

14.
Process hazards review (PHR) techniques have generally been applied by large, sophisticated companies in the nuclear, aerospace, and chemical process industries. There remains, however, a large population of smaller distributors and consumers of hazardous materials which could benefit equally from the application of PHR. These consumers unfortunately are generally less sophisticated and individually lack the necessary resources required to apply such state-of-the-art safety techniques.

Where common processes can be identified, it is possible to conduct a more generic PHR that will provide a sound technical basis for recognizing and preventing the development of hazards wherever these processes are used. Some facility-specific issues will always need to be considered, but the existence of the generic PHR should make the conduct of a PHR by each facility considerably easier and less costly.

Researchers from the National Institute for Occupational Safety and Health (NIOSH) contracted with DNV Technica Inc. to lead a hazard and operability study (HAZOP) of agricultural handling of anhydrous ammonia, from the receipt of ammonia at the retail distribution centre to the application of the ammonia by farmers to the fields. The multidisciplinary HAZOP team consisted of representatives from NIOSH, an agricultural chemical trade association, an ammonia producer, state ammonia facility inspectors, a retail distributor, and an equipment manufacturer. Several participants were part-time farmers with ammonia application experience.

Some specific aspects of applying the HAZOP technique in the context of this study, the findings obtained, and the plans to disseminate the important safety information developed during the course of the PHR are discussed. Finally, it is suggested that this approach could prove to be a useful addition to the product stewardship activities of chemical producers.  相似文献   


15.
Accidents often occur in the petrochemical industry, which have a negative impact on society and the environment. Learning Process Safety Knowledge (PSK) from accident cases is essential to prevent accidents and improve safety level. Hazard and Operability Analysis (HAZOP) is a popular hazard risk analysis method. Its report contains large-scale PSK, which can provide safety analysis and decision support for the industry. Subject to the characteristics of PSK, existing researches mine them in the form of sequence labeling. However, there are two intractable problems that cause the PSK mined by the model to be inaccurate. (1) PSK in HAZOP is domain specific, which is rare or even absent in general-domain texts. (2) The entity boundaries are ambiguous. Most domain-specific entities for HAZOP lack boundary characters. Inaccurate security knowledge is not acceptable from the perspective of process safety engineering. To solve the problems, we present a PSK mining architecture with External Lexicon Prior knowledge called EDPMA, EDPMA is prior knowledge-based multi-task HAZOP knowledge mining model. Specifically, EDPMA consists of prior knowledge constructor and sequence labeling model. The prior knowledge constructor expresses prior knowledge in the form of word embedding by three steps. For the sequence annotation model, we improve its embedding and decoding layers. The former incorporated the word vectors generated by the prior knowledge constructor, and the latter added the task of entity boundary prediction. We conduct multiple evaluation experiments on HAZOP datasets. The experimental results show that the accuracy, recall and F1-score of the EDPMA model are 92.92%, 91.85% and 92.38% respectively, which is better than the existing research. Our study represents a meaningful attempt to introduce prior knowledge in HAZOP knowledge mining and makes an important contribution to intelligence the field of process safety.  相似文献   

16.
Adapting the requirements of IEC 61511 to a batch system can be frustrating, particularly for multi-product units. While a Safety Instrumented System (SIS) for continuous operation is often a straightforward detect-decide-act loop, implementing a SIS for a batch system may involve multiple safety functions, time- or state-dependence, intricate calculations, or complex installations. Relationships between the SIS elements and the basic process control system (BPCS) must be tightly managed, providing both for the safety of the unit and its ability to operate without spurious trips or other hindrances. These issues are further complicated when multiple products requiring different functions or setpoints are produced in the same SIS-protected batch unit.This paper will discuss the challenges particular to the design, operation, and maintenance of a SIS in multi-product batch operations and present practical options for successfully resolving the concerns. A key insight into successful adaptation is treating the batch SIS as a “permission” system for the BPCS to operate. Although many items can be addressed through clever engineering practices, sustainable success relies on proactive, robust management of the safety lifecycle.  相似文献   

17.
Safety barriers include physical and non-physical means in different industries for preventing the occurrences of hazardous events and mitigating the consequences in case they have occurred. After clarifying the relevant terminologies, this article reviews the literature in the domain of safety barriers in the recent decade, and categorizes these studies into barrier theory, barrier engineering and barrier management. Classifications of barriers, performance measures, modeling approaches and data-driven analysis for safety barriers are reviewed as parts of barrier theories. In the engineering section, the research advances are presented in accordance with design for reliability and safety, test and maintenance strategies, responses to dependent failures, and diagnosis and prognosis of degradations. Then, project and process management, human and organizational factors, and standardization and compliance management of safety barriers are summarized. Based on the review of literature, research perspectives on safety barriers for resilience, digital safety, security of barriers, utilizing data, and dealing with intelligence, are highlighted and potential challenges are mentioned. This study is therefore expected to be beneficial to the researchers of system and safety engineering, with systematically streamlining and innovatively categorizing the recent findings and insights.  相似文献   

18.
核电数字化仪系统既涉及反应堆随时间变化的物理动态演化过程,又涉及计算机的离散控制过程,属于典型的实时混成系统。微分动态逻辑是近年在混成系统验证领域的新方法。提出以微分动态逻辑为基础的构建反应堆控制系统安全验证模型方法,验证反应堆控制系统中离散化的逻辑控制与反应堆连续性的物理连续变化过程之间的相互作用能否保证反应堆安全需求,从而提高数字化反应堆控制系统设计的安全性。  相似文献   

19.
管锋 《安全》2019,40(7):29-32,37
为了保证电镀废水处理工艺的安全性,首先采用危险与可操作性分析(HAZOP)方法定性辨识工艺中潜在的危险和危害,并提出安全对策措施;然后采用保护层分析(LOPA)方法定量计算现有保护措施是否能够将风险控制在可接受范围;如果风险较高,通过增加安全仪表等级(SIL)降低风险值。并通过实例分析证明HAZOP-LOPA分析方法能够有效地实现电镀废水处理工艺的风险评价。  相似文献   

20.
Natural gas plants demand high amount of energy provided through immense fuel gas units that may suffer risk hazards. Implementing a safety management system is the most efficient way of allocating resources for safety. This paper adopts The Layer of Protection Analysis (LOPA) risk Management associated with Fuzzy Logic methodology to prevent or limit industrial accidents. We provide an innovative cascaded fuzzy-LOPA model for certain hazardous scenarios and at different frequencies of occurrence. The introduced model is tested at moderate and high risk levels controlled in its practical limits through the use of Safety Integrity Functions (SIF). Obtained results show how this fuzzy-LOPA achieves better results to maintain the Safety Integrity Level (SIL) rating to acceptable limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号