首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to prevent dust explosions due to electrostatic discharges (ESD), this paper reports the minimum ignition energy (MIE) of aluminum powders in the air and the effective nitrogen (N2) concentration for the inert technique. The Hartman vertical-tube apparatus and five kinds of different sized pure aluminum powders (median particle size, D50; 8.53 μm–51.2 μm) were used in this study. The statistic minimum ignition energy (MIEs) of the most sensitive aluminum powder used in this study was 5 mJ, which was affected by the powder particle size (D50; 8.53 μm). In the case of aluminum powder, the inerting effects of N2 were quite different from the polymer powders. The MIE of aluminum powder barely changed until the N2 concentration was 89% in comparison with that of the normal air. When the N2 concentration was 90%, the MIE of aluminum powders suddenly exceeded 1000 mJ, which does not occur easily with ESD in the industrial process.  相似文献   

2.
A novel nanocomposite was synthesized by incorporating three different types of flame-retardants and its extinguishing performance was tested for gaseous fires. The nanocomposite consists of the inorganic magnesium hydroxide (MH) nanoparticles as the dominant component, the nitrogen-based melamine cyanurate (MCA), and the phosphorus-based ODOPB. The wet mixing, dry mixing, and ultrasonic agitation were employed in the preparation process to enhance the homogeneity of the nanocomposite. The prepared powders were characterized using a series of analytical instruments including X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravity analyzer (TGA), and differential scanning calorimeter (DSC). The efficiency of various samples in extinguishing gaseous fires was investigated in a lab-scale extinguishing system. The fire extinguishing tests indicated that the nanocomposite is considerably more effective in fire extinguishing than other powders in terms of extinction time and agent mass consumed. The fire extinction time of nanocomposite was 45.2% shorter than that of commercial ABC-MAP powder. Furthermore, the consumed amount of nanocomposite was 63.2% less than that of commercial powder. In addition, the order of extinguishing mass concentrations was as follows: the novel nanocomposite (103.7 g/m3) < MH/MCA (148.1 g/m3) < MH/ODOPB (155.6 g/m3) < MH (170.4 g/m3) < commercial ABC powder (281.5 g/m3) < MCA/ODOPB (384.1 g/m3). The fire suppression mechanisms of the nanocomposite were also discussed. It was inferred that the extinguishing mechanism of nanocomposite comprised of simultaneous chemical and physical inhibition actions involving chemical inhibition action, cooling action, and asphyxiation action. This study provides a promising attempt to gain benefits from the striking features of nanotechnology and flame-retardants in extinguishing gaseous fires.  相似文献   

3.
This paper experimentally investigated the relation between the minimum ignition energy (MIE) of magnesium powders as well as the effect of inert nitrogen (N2) on the MIE. The modified Hartmann vertical-tube apparatus and four kinds of different-sized pure magnesium powders (median particle size, D50; 28.1 μm–89.8 μm) were used in this study. The MIE of the most sensitive magnesium powder was 4 mJ, which was affected by the powder particle size (D50; 28.1 μm). The MIE of magnesium powder increased with an increase in the N2 concentration for the inerting technique. The magnesium dust explosion with an electrostatic discharge of 1000 mJ was suppressed completely at an N2 concentration range of more than 98%. The experimental data presented in this paper will be useful for preventing magnesium dust explosions generated from electrostatic discharges.  相似文献   

4.
Leakage accidents of pressurized flammable liquids often occur in chemical plants. To investigate electrostatic hazards due to liquid leakage, the amounts of electrostatic charge during the leakage were observed. The electric field of the clouds generated by liquid leakage was also examined. Various types of pipeline have been designed in consideration of potential leakage that might lead to accidents during industrial processes. Leakage pressure in the range of 0.1–0.3 MPa was used. With regard to the materials, water and kerosene were used. The results obtained from the experiments show that electrostatic charges depend on leakage parameters, such as the type of liquid, the gasket material between flanges, and the pipeline pressure. In all tests, the amount of the electrostatic charges of water, 0.12–0.83 μC/kg, was larger than that of kerosene, ?0.04 to 0.16 μC/kg. The maximum value of the electric field, generated from the leakage liquid in this study, 40.9 v/cm, is a safe level. No incendiary electrostatic sparks, such as brush and/or spark discharges, were detected in our tests.  相似文献   

5.
Explosion characteristics of micron- and nano-size magnesium powders were determined using CSIR-CBRI 20-L Sphere, Hartmann apparatus and Godbert-Greenwald furnace to study influence of particle size reduction to nano-range on these. The explosion parameters investigated are: maximum explosion pressure (Pmax), maximum rate of pressure-rise (dP/dt)max, dust explosibility index (KSt), minimum explosible concentration (MEC), minimum ignition energy (MIE), minimum ignition temperature (MIT), limiting oxygen concentration (LOC) and effect of reduced oxygen level on explosion severity. Magnesium particle sizes are: 125, 74, 38, 22, 10 and 1 μm; and 400, 200, 150, 100, 50 and 30 nm. Experimental results indicate significant increase in explosion severity (Pmax: 7–14 bar, KSt: 98–510 bar·m/s) as particle size decreases from 125 to 1 μm, it is maximum for 400 nm (Pmax: 14.6 bar, KSt: 528 bar·m/s) and decreases with further decrease of particle size to nano-range 200–30 nm (Pmax: 12.4–9.4 bar, KSt: 460–262 bar·m/s) as it is affected by agglomeration of nano-particles. MEC decreases from 160 to 30 g/m3 on decreasing particle size from 125 to 1 μm, its value is 30 g/m3 for 400 and 200 nm and 20 g/m3 for further decrease in nano-range (150–30 nm). MIE reduces from 120 to 2 mJ on decreasing the particle size from 125 to 1 μm, its value is 1 mJ for 400, 200, 150 nm size and <1 mJ for 50 and 30 nm. Minimum ignition temperature is 600 °C for 125 μm magnesium, it varies between 570 and 450 °C for sizes 38–1 μm and 400–350 °C for size range 400–30 nm. Magnesium powders in nano-range (30–200 nm) explode less violently than micron-range powder. However, likelihood of explosion increases significantly for nano-range magnesium. LOC is 5% for magnesium size range 125–38 μm, 4% for 22–1 μm, 3% for 400 nm, 4% for 200, 150 and 100 nm, and 5% for 50 and 30 nm. Reduction in oxygen levels to 9% results in decrease in Pmax and KSt by a factor of 2–3 and 4–5, respectively, for micron as well as nano-sizes. The experimental data presented will be useful for industries producing or handling similar size range micron- and nano-magnesium in order to evaluate explosibility of their magnesium powders and propose/design adequate safety measures.  相似文献   

6.
Cationic polyelectrolyte promoted effective attachment of iron oxide nanoparticles (IONPs) onto microalgal cells through electrostatic attraction. Poly(diallyldimethylammonium chloride) (PDDA) and chitosan (ChiL), both are cationic polymer, are feasible to act as binding agent to promote rapid magnetophoretic separation of Chlorella sp. through low gradient magnetic separation (LGMS) with field gradient ▿B less than 80 T/m in real time. Cell separation efficiency up to 98% for the case of PDDA and 99% for the case of ChiL can be achieved in 6 min when 3 × 107 cells/mL Chlorella sp. are exposed to 300 mg/L surface functionalized-IONPs (SF-IONPs). Different polyelectrolytes do not give significant effect on cell separation efficiency as long as the particle attachment occurred. However, the PDDA is more preferable as the binder for all type of microalgae medium than the chitosan (ChiL) since it is not pH dependent. SF-IONPs coated with PDDA guarantee the cell separation performance for all pH range of cell medium, with 98.21 ± 0.40% at pH 8.84. On the other hand, the ChiL performance will be affected by the cell medium pH, with only 22.93 ± 31.03% biomass recovery at pH 9.25.  相似文献   

7.
Pulverized materials such as metallic or polymer powders play a considerable role in many industrial processes. Their use requires the introduction of preventive safeguards to control the plant's safety.PA12 polymer powder processing by laser sintering is characteristic of this tendency. The present work concerns PA12 powder (bimodal particle size distribution: 10 μm and 55 μm) and relates to explosion sensitivity and the thermal degradation of this powder, which can occur during laser sintering. Minimum Ignition Energy is determined using a modified Hartmann tube combined with the Langlie method developed in the PRISME Laboratory. This study shows the influence of parameters such as distance between the electrodes, powder concentration and arc power on MIE values. Theses parameters vary in the range of 3–6 A for the current intensity of the spark and the electrode gap in the range of 2.5–4 mm. The MIE is obtained for a spark gap of 3 mm and current intensity of the 4 A spark in our device. It shows that the MIE is less than 40 mJ for concentrations approaching 1000 g/m3. At lower concentrations (under 150 g/m3) the MIE increases but discrepancies in measurements appear, probably because of the static electricity that creates strong irregularities in dust dispersion. The second part of this study concerns the thermal degradation of the PA12 which is performed by thermogravimetric experiments coupled with mass spectrometric (MS) analysis for gas investigation. The mass loss measurement combined with the gas analysis allows the principal stages of degradation to be determined so as to calculate the kinetics parameter PA12. Experiments have been performed for different heating rates between 1 and 30 K min?1 and the reproducibility of experiments has been verified. The activation energy is determined using two methods: Freidman and KAS. For a reaction rate of between 0.2 and 0.6, the activation energy is nearly constant. The KAS method gives a value of Ea = 250 kJ mol?1 and the Friedman method gives Ea = 300 kJ mol?1. The gas analysis by MS shows that oxidation begins at over 350 °C and finishes at under 650 °C with the formation of CO2 and H2O. Other major peaks with an m/z ratio of 29, 28 and 30 are noticed in this range of temperature. They show the presence of intermediate species such as C2H6, NO or CH2O. The presence of HCN is also detected (m/z ratio of 27).  相似文献   

8.
Biodegradation of toluene vapour was investigated for 168 days in a polyurethane packed biofilter inoculated with a mixed microbial population. Biofilter consisted of five square cross-section modular units each of size 0.16 m × 0.16 m × 0.20 m and filled with the polyurethane foam cubes up to a height of 0.15 m. Inlet concentration of toluene was varied from 0.04 to 2.5 g m?3 and the volumetric flow rate of toluene loaded air from 0.06 to 0.90 m3 h?1.Depending upon initial loading rates, removal efficiency ranging from 68.2 to 99.9% and elimination capacity ranging from 10.85 to 90.48 g h?1 m?3 were observed during steady state operations. More than 90% removal efficiency was observed up to an inlet loading rate of 76.3 g h?1 m?3. High carbon recovery (>90%) indicated effective biodegradation in the bed. Low variation of pH (7.2–8.8) and pressure drop (45.8–76.3 Pa) was observed. The stability of the biomass was evident from the fast response of the biofilter to shutdown and restartup.  相似文献   

9.
Experiments have been conducted to gain insight into the credibility of sparging aqueous solutions as an electrostatic ignition hazard for sensitive hydrogen/air or fuel/oxygen mixtures (Minimum Ignition Energies of ∼0.017 mJ and ∼0.002 mJ, respectively, compared to ∼0.25 mJ for hydrocarbon/air mixtures). Tests performed in a 0.5 m3 ullage produced electric field strengths between 125 and 560 V m−1 for air flows of 5–60 l min−1, respectively, comprised of 2–4 mm diameter bubbles. Field strength can be related to the space charge and fitting to an exponential accumulation curve enabled the charge generation rate from the air flows to be estimated. This was observed to be directly proportional to the air flow and its magnitude was consistent with literature data for bubble bursts. The charge accumulation observed at laboratory scale would not be a cause for concern. On the basis of a simple model, the charge accumulation in a 27 m3 ullage was predicted for a range of air flows. It is apparent from such calculations that ignition of hydrocarbon/air mixtures would not be expected. However, it would seem possible that field strengths might be sufficient to cause a risk of incendive spark or corona discharges in moderately sized vessels with sensitive flammable mixtures.  相似文献   

10.
Electrostatic Powder coating which is a surface finishing technique has widely been used in paint industry since its invention in the 1960s. However, so far, insufficient attention has been paid to the powder fires and/or explosion hazards caused by electrostatic spark during coating process. This paper is a report of the electrostatic spark ignitability of aluminous coating powders (dry blend-type) used in practical electrostatic powder coating. The Hartman vertical-tube apparatus was used for the minimum ignition energy (MIE) test. Various aluminous coating powders, different with respect to the amount of aluminum pigment, were used in this study. Experimental results obtained in this study are as follows: (1) The aluminous coating powder was so sensitive that even an electrostatic spark with an energy as low as 10 mJ could ignite it. (2) The particle size of aluminous coating powder has a considerable effect on the ignitability when the aluminum pigment concentration is within 6 wt% of the practical coating powder manufacturing standards. Thus, the conventional expression for estimating the MIE can be useful when assessing the electrostatic hazards associated with aluminum coating powders.  相似文献   

11.
Flame propagation behaviors of nano- and micro-polymethyl methacrylate (PMMA) dust explosions were experimentally studied in the open-space dust explosion apparatus. High-speed photography with normal and microscopic lenses were used to record the particle combustion behaviors and flame microstructures. Simple physical models were developed to explore the flame propagation mechanisms. High-speed photographs showed two distinct flame propagation behaviors of nano- and micro-PMMA dust explosions. For nano-particles, flame was characterized by a regular spherical shape and spatially continuous combustion structure combined with a number of luminous spot flames. The flame propagation mechanism was similar to that of a premixed gas flame coupled with solid surface combustion of the agglomerates. In comparison, for micro-particles, flame was characterized by clusters of flames and the irregular flame front, which was inferred to be composed of the diffusion flame accompanying the local premixed flame. It was indicated that smaller particles maintained the leading part of the propagating flame and governed the combustion process of PMMA dust clouds. Increasing the mass densities from 105 g/m3 to 217 g/m3 for 100 nm PMMA particles, and from 72 g/m3 to 170 g/m3 for 30 μm PMMA particles, the flame luminous intensity, scale and the average propagation velocity were enhanced. Besides, the flame front became more irregular for 30 μm PMMA dust clouds.  相似文献   

12.
It is well known that during the filling of silos and containers with bulk material, so-called cone discharges can occur because of electrostatic charges. Whether or not cone discharges occur at all depends on whether the breakdown field strength of air under atmospheric conditions of 3 MV/m is reached at the silo and container inner wall. This in turn depends on the charge to mass ratio of the bulk, the bulk resistivity, the bulk density, the relative permittivity of the bulk material, the silo or container diameter and the filling rate. If cone discharges can't be avoided, the energy of cone discharges can be estimated according to the equation given in the relevant guidelines TRGS 727 (2016) and IEC/TS 60079-32-1 (2013). Therefore, the coarse fraction must be considered. As soon as the energy of the cone discharge is greater than or equal to the minimum ignition energy of the bulk material introduced, there is a risk of dust explosion. Here the fine fraction of the bulk material is relevant.The investigations described are a practical example how computer models can be used to assess the occurrence of cone discharges. It is calculated for which silo and container diameters and filling rates the critical field strength of 3 MV/m is reached. In these calculations the charge relaxation during pneumatic filling with bulk material is taken into account. The results of the computational modelling together with operational boundary conditions serve as a decision basis whether exclusion of incendive ignition sources is an adequate safety measure or whether further explosion protection measures must be considered. Finally, a brief overview of other possible explosion protection measures is given.  相似文献   

13.
The process of delivering nanograde metal powders by a high-speed carrier gas is often subject to high explosion risks. This study adopted initial flow rates of 13.1, 8.5, 6.5, and 3.5 m/s for air transporting 30-nm titanium powder, 35-nm iron powder, and 35-nm aluminum powder to gauge the impact on a pipe bend in a 20-l-apparatus. The test results revealed that the 30-nm titanium powder caused an explosion at all initial flow rates; the 35-nm iron powder also caused an explosion, but dust explosion and sintering were eliminated when the flow rate was adjusted to less than 3.5 m/s; and the 35-nm aluminum powder exhibited no explosion or sintering at all flow rates. When pure nitrogen was used for transporting nanograde metal powders, no explosions occurred for all the three types of metal powders. The minimum ignition energy for these three types of nanograde metal powders was less than 1 mJ.  相似文献   

14.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

15.
We investigate the PAN dust explosion inhibition behaviors of NaHCO3 and Al(OH)3 in a 20 L spherical explosion system and a transparent pipe explosion propagation test system. The results show that, in the standard 20 L spherical explosion system, the highest PAN dust explosion concentration is 500 g/m3, the maximum explosion pressure is 0.661 MPa, and the maximum explosion pressure increase rate is 31.64 MPa/s; adding 50% NaHCO3 and 60% Al(OH)3 can totally inhibit PAN dust explosion. In the DN0.15 m transparent pipe explosion propagation test system, for 500 g/m3 PAN dust, the initial explosion flame velocity is 102 m/s, the initial pressure is 0.46 MPa, and the initial temperature is 967 °C; adding 60% NaHCO3 and 70% Al(OH)3 can totally inhibit PAN dust explosion flames. Through FTIR and TG analyses, we obtain the explosion products and pyrolysis patterns of the explosion products of PAN dust, NaHCO3, and Al(OH)3. On this basis, we also summarize the PAN dust explosion inhibition mechanisms of NaHCO3 and Al(OH)3.  相似文献   

16.
The hazardous sludge disposal process in the form of landfills requires the determination inter alia of the flammable and explosion properties of dried sewage sludge dust, which has the ability to ignite and spontaneously combust when stored in silos. At a constant furnace surface temperature, the minimum ignition temperature of the sludge dust layer with a layer thickness of 5 mm is 270 °C, and for a layer thickness of 12.5 mm it is 250 °C. Two selected fire extinguishing powders for Class A, B, C and D fires were used in the study to determine the possibility of reducing the susceptibility of dried wastewater to ignition from heated surface, self-ignition and explosion parameters. The most effective extinguishing powder was ABC Favorit, which increased the value of the minimum ignition temperature of the layer (5 mm thick) to 360 °C and the spontaneous ignition temperature of the sludge with this powder increased by 22 °C at 169.6 cm3 in comparison to the sludge without extinguishing powder, respectively. The lowest self-ignition temperature of 136 °C was recorded for the largest tested volume (169.6 cm3) for dried sewage dust without any fire extinguishing powders. The biggest values of pmax and (dp/dt)max dried sewage dust were recorded 4.8 bar and 113 bar/s respectively. By analysing the obtained test results, it can be assumed that dried sewage dust is a combustible material with properties similar to biomass.  相似文献   

17.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

18.
Spraying water under high pressure generates charge-separating processes. While cleaning tanks and vessels in which an explosive atmosphere is present, an explosion may occur in the event of a resulting discharge. Water forms electrical double layers at the phase boundaries. Mechanical separation processes dissolve the water into many drops. This leads to charge separation and the charging of the sprayed water. The mechanical separation processes include water exiting from the nozzle, hydrodynamic instability in the jet and impact with an obstacle. Given that water has many charge carriers, the charge is stronger than with solvents. Whether the charges and the resulting discharges are potentially capable of igniting an explosive atmosphere must be investigated. The aim of this research is to define the quantity and polarity of the electrostatic charges of sprayed water under high pressure. Different measurement techniques and methods are used to enable mutual validation and to generate verified measurement results of the electric field and the potential. Water of different electrical conductivity is sprayed in free space and into a grounded conductive 1 m3 vessel. Design changes to the vessel allow centric or oblique spraying. The result is intended to extend the scope of application of the German regulation TRGS 727 and the international IEC TS 60079-32-1, which refer to ignition hazards due to electrostatic charging. This project is funded by the DGUV (German Social Accident Insurance) and partners from industry.  相似文献   

19.
The explosion of the methane/air mixture and the methane/coal dust/air mixture under 40 J center spark ignition condition was experimentally studied in a large-scale system of 10 m3 vessel. Five pressure sensors were arranged in space with different distances from the ignition point. A high-speed camera system was used to record the growth of the flame. The maximum overpressure of the methane/air mixture appeared at 0.75 m away from the ignition point; the thickness of the flame was about 10 mm and the propagation speed of the flame fluctuated around 2.5 m/s with the methane concentration of 9.5%. The maximum overpressure of the methane/coal dust/air mixture appeared at 0.5 m. The flame had a structure of three concentric zones from outside were the red zone, the yellow illuminating zone and the bright white illuminating zone respectively; the thickness and the propagation speed of the flame increased gradually, the thickness of red zone and yellow illuminating zone reached 3.5 cm and 1 cm, the speed reached 9.2 m/s at 28 ms.  相似文献   

20.
A biotrickling filter packed with coal slag as packing medium was continuously used for more than 9 months under high ammonia loading rates of up to 140 g/m3/h. Nitrogen mass balance and microbial community analysis were conducted to evaluate the inhibitory effects of high ammonia concentration and metabolic by-products on the rates of nitrification. Ammonia removal efficiency reached above 99% at an empty bed retention time of as low as 8 s when inlet concentrations were below 350 ppm. The maximum and critical elimination capacities of the biotrickling filter were 118 g/m3/h and 108.1 g/m3/h, respectively. Kinetics analysis results showed that less than 2.5 s was required for the biotrickling filter with pH control to treat ammonia at concentrations of up to 500 ppm in compliance with the Taiwan EPA standard (outlet NH3 < 1 ppm). Results of mass balance and microbial community analysis indicated that complete removal was mainly contributed by the activities of autotrophic ammonia oxidizing bacteria and not by physical absorption or adsorption at low loading rates. However, at high inlet loadings, ammonium became the dominant by-product due to inhibitory effects of high ammonia concentration on the bacterial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号