首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
With the development of modern automatic control systems, chemical accidents are of low frequency in most chemical plants, but once an accident happens, it often causes serious consequences. Near-misses are the precursor of accidents. As the process progresses, near misses caused by abnormal fluctuation of process variables may eventually lead to accidents. However, variables that may lead to serious consequences in the production process cannot update the risk in the life cycle of the process by traditional risk assessment methods, which do not pay enough attention to the near misses. Therefore, this paper proposed a new method based on Bayesian theory to dynamically update the probability of key variables associated with process failure risk and obtain the risk change of the near-misses. This article outlines the proposed approach and uses a chemical process of styrene production to demonstrate the application. In this chemical process, the key variables include flow rate, liquid level, pressure and temperature. In order to study the dynamic risk of the chemical process with consideration of near misses, according to the accumulated data of process variables, firstly the abnormal probability of the variables and the failure rate of safety systems associated with the variables were updated with time based on Bayesian theory. On the basis of the dynamic probability of key process variables, an event tree of possible consequences caused by variable anomalies was established. From the logical relationship of the event tree, the probability of different consequences can be obtained. The results show that the proposed risk assessment method based on Bayesian theory can overcome the shortcomings of traditional analysis methods. It shows the dynamic characteristics of the probability of different near misses, and achieves the dynamic risk analysis of chemical process accidents.  相似文献   

2.
Among the various techniques used for safety analysis of process systems, bow-tie (BT) analysis is becoming a popular technique as it represents an accident scenario from causes to effects. However, the BT application in the dynamic safety analysis is limited due to the static nature of its components, i.e. fault tree and event tree. It is therefore difficult in BT to take accident precursors into account to update the probability of events and the consequent risk. Also, BT is unable to represent conditional dependency. Event dependency is common among primary events and safety barriers. The current paper illustrates how Bayesian network (BN) helps to overcome these limitations. It has also been shown that BN can be used in dynamic safety analysis of a wide range of accident scenarios due to its flexible structure. This paper also introduces the application of probability adapting in dynamic safety analysis rather than probability updating. A case study from the U.S. Chemical Safety Board has been used to illustrate the application of both BT and BN techniques, with a comparison of the results from each technique.  相似文献   

3.
Process safety is the common global language used to communicate the strategies of hazard identification, risk assessment and safety management. Process safety is identified as an integral part of process development and focuses on preventing and mitigating major process accidents such as fires, explosions, and toxic releases in process industries. Accident probability estimation is the most vital step to all quantitative risk assessment methods. Drilling process for oil is a hazardous operation and hence safety is one of the major concerns and is often measured in terms of risk. Dynamic risk assessment method is meant to reassess risk in terms of updating initial failure probabilities of events and safety barriers, as new information are made available during a specific operation. In this study, a Bayesian network model is developed to represent a well kick scenario. The concept of dynamic environment is incorporated by feeding the real-time failure probability values (observed at different time intervals) of safety barriers to the Bayesian network in order to obtain the corresponding time-dependent variations in kick consequences. This study reveals the importance of real-time monitoring of safety barrier performances and quantitatively shows the effect of deterioration of barrier performance on kick consequence probabilities. The Macondo blowout incident is used to demonstrate how early warnings in barrier probability variations could have been observed and adequately managed to prevent escalation to severe consequences.  相似文献   

4.
Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.  相似文献   

5.
Abnormal process situation may lead to tremendous negative impact on sustainability, wellbeing of workers and adjacent communities, company's profit, and stability of supply chains. Failure of equipment and process subsystems are among the primary causes of abnormal situations. The conventional approach in handling failure-based abnormal situations has usually focused on operational strategies. Such an approach overlooks the critical role of process design in mitigating failure, while simultaneously considering the effects of such failure on process economic performance. The aim of this work is to introduce a systematic methodology that accounts for failure early enough during the conceptual design stages. Once a base-case design is developed, the methodology starts by identifying the sources of failure that are caused by reliability issues including equipment, operational procedures, and human errors for a given process system or subsystem. This allows for the identification of critical process subsystem(s) that are more failure-prone or cause greater downtime than other subsystems. Bayesian updating and Monte Carlo techniques are utilized to determine the appropriate distributions for the failure and repair scenario(s), respectively, in question. Markov analysis is used to determine the system availability. Next, the process revenue is described as a function of inherent availability. The effects of failures are incorporated into profitability calculations to establish an economic framework for trading off failure and profitability. In the proposed framework, the economic potential of alternative design scenarios is evaluated and an optimization formulation with the objective of maximizing incremental return on investment (IROI) is utilized to make a design decision. A case study on an ethylene plant is solved to demonstrate the applicability and value of the proposed approach.  相似文献   

6.
Dynamic accident modeling for a gas gathering station is implemented to prevent high-sulfur natural gas leakage and develop equipment inspection strategy. The progress of abnormal event occurring in the gas gathering station is modeled by the combination of fault tree and event sequence diagram, based on accident causal chain theory, i.e. the progress is depicted as sequential failure of safety barriers, then, the occurrence probability of the consequence of abnormal event is predicted. Consequences of abnormal events are divided into accidents and accident precursors which include incidents, near misses and so on. The Bayesian theory updates failure probability of safety barrier when a new observation (i.e. accident precursors or accidents data) arrives. Bayesian network then correspondingly updates failure probabilities of basic events of the safety barriers with the ability of abductive reasoning. Consequence occurrence probability is also updated. The results show that occurrence probability trend of different consequences and failure probability trend of safety barriers and basic events of the safety barriers can be obtained using this method. In addition, the critical basic events which play an important role in accidents occurrence are also identified. All of these provide useful information for the maintenance and inspection of the gas gathering station.  相似文献   

7.
The gas pipeline network is an essential infrastructure for a smart city. It provides a much-needed energy source; however, it poses a significant risk to the community. Effective risk management assists in maintaining the operational safety of the network. The risk management of the network requires reliable dynamic failure probability analysis. This paper proposes a methodology of condition monitoring and dynamic failure probability analysis of urban gas pipeline network. The methodology begins with identifying key design and operational factors responsible for pipeline failure. Subsequently, a causation-based failure model is developed as the Bowtie model. The Bowtie model is transformed into a Bayesian network, which is analyzed using operational data. The key contributory factors of accident causation are monitored. The monitored data is used to analyze the updated failure probability of the network. The gas pipeline network's dynamic failure probability is combined with the potential consequences to assess the risk. The application of the approach is demonstrated in a section of the urban gas pipeline.  相似文献   

8.
The growing demand for natural gas has pushed oil and gas exploration to more isolated and previously untapped regions around the world where construction of LNG processing plants is not always a viable option. The development of FLNG will allow floating plants to be positioned in remote offshore areas and subsequently produce, liquefy, store and offload LNG in the one position. The offloading process from an FLNG platform to a gas tanker can be a high risk operation. It consists of LNG being transferred, in hostile environments, through loading arms or flexible cryogenic hoses into a carrier which then transports the LNG to onshore facilities. During the carrier's offloading process at onshore terminals, it again involves risk that may result in an accident such as collision, leakage and/or grounding. It is therefore critical to assess and monitor all risks associated with the offloading operation. This study is aimed at developing a novel methodology using Bayesian Network (BN) to conduct the dynamic safety analysis for the offloading process of an LNG carrier. It investigates different risk factors associated with LNG offloading procedures in order to predict the probability of undesirable accidents. Dynamic failure assessment using Bayesian theory can estimate the likelihood of the occurrence of an event. It can also estimate the failure probability of the safety system and thereby develop a dynamic failure assessment tool for the offloading process at a particular FLNG plant. The main objectives of this paper are: to understand the LNG offloading process, to identify hazardous events during offloading operation, and to perform failure analysis (modelling) of critical accidents and/or events. Most importantly, it is to evaluate and compare risks. A sensitivity analysis has been performed to validate the risk models and to study the behaviour of the most influential factors. The results have indicated that collision is the most probable accident to occur during the offloading process of an LNG carrier at berth, which may have catastrophic consequences.  相似文献   

9.
页岩气集输管道运行压力和出砂量在生产过程中衰减显著,这导致管道失效概率不断变化,针对这一问题,采用贝叶斯网络方法,建立了页岩气集输管道失效概率动态计算模型。首先,分析页岩气气质特征、管道运行工况及失效原因,利用逻辑门的连接关系,建立了页岩气集输管道失效故障树;其次,基于贝叶斯网络与失效故障树的结构映射关系,将失效故障树转化成贝叶斯网络结构;然后,通过贝叶斯网络的参数学习,实现模型求解;最后,进行了实例应用。研究结果表明:该模型不仅可有效计算页岩气集输管道的失效概率,还能确定影响管道失效的关键风险因素,并且可通过调整节点的状态及概率分布,实现页岩气集输管道失效概率的更新。  相似文献   

10.
为揭示石油炼化装置事故风险动态特性和事故情景演变路径,在对石化装置进行风险因素分析的基础上构建石化装置火灾事故故障树,基于贝叶斯网络非常规突发事故的演变过程,构建情景演变下的动态贝叶斯网络模型,在综合考虑应急措施的基础上,利用MATLAB软件和联合概率公式计算出各种事故场景的状态概率.以丙烯精馏装置火灾事故为例,结果表...  相似文献   

11.
At all levels, the understanding of uncertainty associated with risk of major chemical industrial hazards should be enhanced. In this study, a quantitative risk assessment (QRA) was performed for a knockout drum in the distillation unit of a refinery process and then probabilistic uncertainty analysis was applied for this QRA. A fault tree was developed to analyze the probability distribution of flammable liquid released from the overfilling of a knockout drum. Bayesian theory was used to update failure rates of the equipment so that generic information from databases and plant equipment real life data are combined to gain all available knowledge on component reliability. Using Monte Carlo simulation, the distribution of top event probability was obtained to characterize the uncertainty of the result. It was found that the uncertainty of basic event probabilities has a significant impact on the top event probability distribution. The top event probability prediction uncertainty profile showed that the risk estimation is improved by reducing uncertainty through Bayesian updating on the basic event probability distributions. The whole distribution of top event probability replaces point value in a risk matrix to guide decisions employing all of the available information rather than only point mean values as in the conventional approach. The resulting uncertainty guides where more information or uncertainty reduction is needed to avoid overlap with intolerable risk levels.  相似文献   

12.
Process industries involve handling of hazardous substances which on release may potentially cause catastrophic consequences in terms of assets lost, human fatalities or injuries and loss of public confidence of the company. In spite of using endless end-of-the-pipe safety systems, tragic accidents such as BP Texas City refinery still occur. One of the main reasons of such rare but catastrophic events is lack of effective monitoring and modelling approaches that provide early warnings and help to prevent such event. To develop a predictive model one has to rely on past occurrence data, as such events are rare, enough data are usually not available to better understand and model such behavior. In such situations, it is advisable to use near misses and incident data to predict system performance and estimate accident likelihood. This paper is an attempt to demonstrate testing and validation of one such approach, dynamic risk assessment, using data from the BP Texas City refinery incident.Dynamic risk assessment is a novel approach which integrates Bayesian failure updating mechanism with the consequence assessment. The implementation of this methodology to the BP Texas City incident proves that the approach has the ability to learn from near misses, incident, past accidents and predict event occurrence likelihood in the next time interval.  相似文献   

13.
A method for calculating the dynamic reliability of safety systems and its application to a refrigerated liquid cryogenic ammonia storage tank is presented. The method is based on the theory of Markov chains and can model dynamic phenomena of the process and its safety systems. It offers the capability of modelling realistically the competing process of repairing failed safety systems and the exceeding of safe limits by some critical physical parameters of the process. The results of the Markovian analysis are compared to those of the classical Fault Tree/Event Tree methods and it is shown that the proposed method offers a substantial improvement over the classical approach. The probability of failure from overpressure of a cryogenic ammonia storage tank depends in general on the level of the ammonia in the tank at the time of accident initiation. Assuming a uniform distribution for the ammonia level in the tank, the average upper and lower limits for the failure probability over a year provided by the FT/ET methods span three orders of magnitude [1.4×10−1–1.0×10−4] depending on whether repair is considered or not. The proposed approach realistically determines this failure probability at 3.3×10−3. Additional results from specific levels of ammonia are also provided.  相似文献   

14.
In almost all industries, fire alarm systems play a vital role in the reducing the risks associated with fires and damages. Therefore, it is necessary to evaluate their reliability and performance in emergency situations. The present study aimed to use fault tree analysis (FTA) to determine the root causes involved in the failure of fire alarm systems, to use Fuzzy set theory and expert elicitation to determine relative probabilities, and finally, to evaluate the reliability of a fire alarm system using dynamic Bayesian networks (BNs) during a thirty-six months period. A total of 29 basic events were detected from the FT. The reliability of the fire alarm system was estimated at 0.954 according to the FT and 0.957 according to conventional BNs. The reliability of the fire alarm system after 36 months was estimated at 0.375 according to dynamic BNs. All the events involved in the failure of fire alarm systems were drawn in the fault tree diagram. The results indicate that remodeling of these systems and simultaneous construction activities are the most important factors in the failure of the fire alarm system. System reliability can also be increased to 0.965 by providing preventive and control measures to reduce the probability of critical events.  相似文献   

15.
结合GO-FLOW法的动态特性,将动态贝叶斯理论应用于高速铁路牵引变电所可靠性的分析中。首先将GO-FLOW法中的功能操作符、逻辑操作符、信号发生器、输入信号流等转换为相应的动态贝叶斯网络模块,并建立其条件概率表;然后根据牵引变电所主接线GO-FLOW图和主接线系统功能逻辑关系进行连接,得到基于GO-FLOW图的牵引变电所主接线的动态贝叶斯网络模型;最后运用动态贝叶斯算法对模型求解,得到了牵引变电所主接线的可靠性参数和可靠性变化曲线,结果表明当考虑部件随时间推移而失效的情况时更加符合实际。与其他方法相比,该方法考虑了分析对象的动态特征,减少了公式推导过程,简单清晰,便于实际应用。  相似文献   

16.
井筒完整性失效是气井生产中的主要风险,为有效评价井筒完整性风险,应用贝叶斯网络的推理与学习能力,建立了基于贝叶斯网络和Noisy-OR gate模型的井筒完整性失效概率计算方法和风险评价模型。由故障树分析将井筒分为管柱、水泥环密封性、井口装置、水力屏障和其他部件5个评价单元,确定了各单元的主要风险因素,建立了井筒完整性失效的贝叶斯网络拓扑结构;由Noisy-OR gate模型和历史数据,确定了贝叶斯网络的条件概率参数;将基于贝叶斯网络的失效概率与层次分析法相结合,确定了风险评价指标和等级划分标准;建立了气井井筒完整性风险评价方法。结果表明,该方法实现了井筒完整性失效概率的定量计算、风险的定量评价和主要风险因素的反向推理,可为预防和控制井筒完整性失效提供决策依据,有助于降低井筒完整性失效风险。  相似文献   

17.
Chemical Process Industries usually contain a diverse inventory of hazardous chemicals and complex systems required to perform process operations such as storage, separation, reaction, compression etc. The complex interactions between the equipment make them vulnerable to catastrophic accidents. Risk and failure assessment provide engineers with an intuitive tool for decision making in the operation of such plants. Abnormal events and near-miss situations occur regularly during the operation of a system. Accident Sequence Precursors (ASP) can be used to demonstrate the real-time operating condition of a plant. Dynamic Failure Assessment (DFA) methodology is based on Bayesian statistical methods incorporates ASP data to revise the generic failure probabilities of the systems during its operational lifetime.In this paper, DFA methodology is applied on an ammonia storage unit in a specialized chemical industry. Ammonia is stored in cold storage tanks as liquefied gas at atmospheric pressure. These tanks are susceptible to failures due to various abnormal conditions arising due process failures.Tank failures due to three such abnormal conditions are considered. Variation of the failure probability of the safety systems is demonstrated. The authors use ASP data collected from plant specific sources and safety expert judgement. The failure probabilities of some safety systems concerned show considerable deviation from the generic values. The method helps to locate the components which have undergone more degradation over the period and hence must be paid attention to. In addition, a Bayesian predictive model has been used to predict the number of abnormal events in the next time interval. The user-friendly and intuitive nature of the tool makes it appropriate for application in safety assessment reports in process industries.  相似文献   

18.
An application of dynamic Bayesian networks for quantitative risk assessment of human factors on offshore blowouts is presented. Human error is described using human factor barrier failure (HFBF), which consists of three categories of factors, including individual factor barrier failure (IFBF), organizational factor barrier failure (OFBF) and group factor barrier failure (GFBF). The structure of human factors is illustrated using pseudo-fault tree, which is defined by incorporating the intermediate options into fault tree in order to eliminate the binary restriction. A methodology of translating pseudo-fault tree into Bayesian networks and dynamic Bayesian networks taking repair into consideration is proposed and the propagation is performed. The results show that the human factor barrier failure probability only increases within the first two weeks and rapidly reaches a stable level when the repair is considered, whereas it increases continuously when the repair action is not considered. The results of mutual information show that the important degree sequences for the three categories of human factors on HFBF are: GFBF, OFBF and IFBF. In addition, each individual human factor contributes different to the HFBF, those which contribute much should given more attention in order to improve the human reliability and prevent the potential accident occurring.  相似文献   

19.
Traditional risk assessment approaches mainly focus on the pre-failure scenarios with certain information. For complex systems, the scope of risk assessment needs to be extended to include the post-failure phase; because the emerging hazards of these systems cannot be wholly identified and are usually highly uncertain. Thus, resilience assessment needs to be investigated. Most of the existing literature quantify resilience based on a system's performance loss caused by disruptions. These studies fail to assess the probability of a system to sustain or restore to a normal operational state after disruptions occur, how this probability changes with time, and how fast the system can be restored. The dynamic and probabilistic characteristics of resilience must be considered in systemic resilience assessment, in which the engineered system, human and organizational factors, and external disruptions are considered. This paper aims to develop a dynamic Bayesian network (DBN)-based approach to the probabilistic assessment of the system resilience by incorporating temporal processes of adaption and recovery into the analysis of system functionality. The proposed method also provides a new way to define resilience in terms of the probability of system functionality change during and after a disruption. A case study on the Chevron refinery accident is used to demonstrate the applicability of the proposed methodology.  相似文献   

20.
Probabilistic risk assessment (PRA) is a comprehensive, structured and logical analysis method aimed at identifying and assessing risks of complex process systems. PRA uses fault tree analysis (FTA) as a tool to identify basic causes leading to an undesired event, to represent logical dependency of these basic causes in leading to the event, and finally to calculate the probability of occurrence of this event.To conduct a quantitative fault tree analysis, one needs a fault tree along with failure data of the basic events (components). Sometimes it is difficult to have an exact estimation of the failure rate of individual components or the probability of occurrence of undesired events due to a lack of sufficient data. Further, due to imprecision in basic failure data, the overall result may be questionable. To avoid such conditions, a fuzzy approach may be used with the FTA technique. This reduces the ambiguity and imprecision arising out of subjectivity of the data.This paper presents a methodology for a fuzzy based computer-aided fault tree analysis tool. The methodology is developed using a systematic approach of fault tree development, minimal cut sets determination and probability analysis. Further, it uses static and dynamic structuring and modeling, fuzzy based probability analysis and sensitivity analysis.This paper also illustrates with a case study the use of a fuzzy weighted index and cutsets importance measure in sensitivity analysis (for system probabilistic risk analysis) and design modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号