首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
In industries some dangerous liquefied gases may accidentally release and it may form a flammable or toxic mixture after mixing with air. One tool that is being developed in industry for two-phase cloud dispersion modeling is computational fluid dynamics (CFD). In this paper, the dispersion processes of different dangerous materials including liquefied chlorine, liquefied ammonia and liquefied petroleum gas were simulated in the same condition to analyze the characteristics of the initial expansion processes by CFD tool. The heat and mass transfer between droplets and the vapor after an instantaneous release event was calculated by using the Eulerian–Lagrangian method. The results from a number of 3-D CFD based studies were compared with the available small-scale experimental results. The results show that the present model and numerical simulation are reliable.  相似文献   

2.
根据新庄煤矿 1110 1进风巷出现不明雾气 ,笔者认为 ,研究和分析该雾气的成因及是否有毒 ,对煤矿安全生产和矿工的生命安全与健康至关重要。通过现场气象测定和实验室模拟试验 ,确定了雾气成因 ,经雾气发生地点采样分析 ,空气中未发现有毒气体。经实测分析和研究表明 ,进风巷雾气成因是 :当突然打开 1110 1工作面回风巷道中的调节风门时 ,巷道气压突然降低 ,空气膨胀 ,温度有所下降 ,使得空气中的水分凝结 ,从而形成雾气。通过实验室模拟实验再现了这一过程 ,表明对雾气现象的分析和研究的结果是正确的  相似文献   

3.
为研究神东集团乌兰木伦煤矿1-2煤辅运上山内雾气成因,采用数值模拟方法研究进风温度、湿度、风流量等对巷道气候参数的影响。研究结果表明:不同工况下巷道内空气温度均趋近于围岩温度;冬季工况沿巷道走向相对湿度先增加后减小,随进风温度的升高巷道内相对湿度变化幅度减小;夏季工况巷道内相对湿度增加后趋于稳定,随进风相对湿度的升高而升高;巷道内相对湿度随进风速度的增加略有减小。1-2辅运上山起雾是由于风流从进风井至巷道距离过长,造成风流大量吸湿,当风流在1-2辅运上山上行时风流温度降低,风流中携带的水蒸气析出,出现雾气;通过在风路分支设置风窗,风流方向由上行改为下行,可有效解决巷道起雾现象。  相似文献   

4.
During the decommissioning of certain legacy nuclear waste storage plants it is possible that significant releases of hydrogen gas could occur. Such an event could result in the formation of a flammable mixture within the silo ullage and, hence, the potential risk of ignition and deflagration occurring, threatening the structural integrity of the silo. Very fine water mist fogs have been suggested as a possible method of mitigating the overpressure rise, should a hydrogen–air deflagration occur. In the work presented here, the FLACS CFD code has been used to predict the potential explosion overpressure reduction that might be achieved using water fog mitigation for a range of scenarios where a hydrogen–air mixture, of a pre-specified concentration (containing 800 L of hydrogen), uniformly fills a volume located in a model silo ullage space, and is ignited giving rise to a vented deflagration. The simulation results suggest that water fog could significantly reduce the peak explosion overpressure, in a silo ullage, for lower concentration hydrogen–air mixtures up to 20%, but would require very high fog densities to be achieved to mitigate 30% hydrogen–air mixtures.  相似文献   

5.
工艺流程中氨泄漏事故后果分类研究   总被引:1,自引:0,他引:1  
氨是重要的化工原料和产品,工艺流程中氨主要以氨气、液氨、氨溶液三种状态存在。氨气、液氨、氨溶液理化特性及危险特性不同,可能造成的事故后果类型不同,分别进行三种相态下氨泄漏的事故情景分析。氨气泄漏主要考虑蒸气云爆炸、中毒,液氨泄漏主要考虑沸腾液体扩展蒸气爆炸、蒸气云爆炸、中毒,氨溶液泄漏主要考虑中毒和腐蚀。运用半球模型和高斯模型计算某尿素企业液氨球罐泄漏的危害范围。半球泄漏模型计算方法较简单,但没有考虑氨本身性质及气象条件等因素;高斯模型计算过程较复杂,其计算结果与风速、大气稳定度等条件相关。该两种方法计算结果对预防氨泄漏事故发生和氨泄漏事故预警均具有一定参考意义,如何提高模拟分析的准确度是今后研究工作的重点。  相似文献   

6.
工业危险源仿真预警技术   总被引:5,自引:0,他引:5  
概述了应用数字仿真技术于液化天然气风险评价、蒸汽云爆炸后果预测以及液氨储罐泄漏监控预警系统等的国内外研究与发展现状,给出了计算机仿真结果和现场实测数据之间的对比曲线。  相似文献   

7.
在本研究中,对碳钢、铍青铜和铜镍锰合金等三种金属与砂轮和45号钢轮摩擦时产生火花的能力和引燃能力作了对比实验。用于实验的可燃混合气为液化石油气/空气和氢/空气。实验表明,碳钢和砂轮摩擦产生的火花最强烈,但仍很难引燃液化石油气/空气混合气;铍青铜与砂轮摩擦时几乎看不到火花,铜镍锰合金在同样条件下产生火花的几率销大。在摩擦时间较长的条件下,两者均能引燃极易爆炸的氢/空气混合气,但爆炸却并不是在火花出现时立即发生的。可以推断:在上述条件下,摩擦造成的炽热表面是引燃的主要原因,而材料的引燃能力的强弱,不能只以是否产生火花为判断基准。  相似文献   

8.
为研究环境风速对液化天然气(LNG)泄漏扩散过程的影响,采用Fluent建立LNG连续泄漏计算流体力学模型,开展不同风速下LNG泄漏扩散过程的数值模拟研究。结果表明,LNG泄漏扩散分为扩散初期、扩散中期、扩散后期3个阶段,扩散过程中LNG从低温重气逐渐转变成轻质气体。环境风速对气云的扩散主要体现在:低于5级风时,云团以两侧卷吸为主,气云表现为"叶状分叉"、中间低两端高,此时气云横风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而增大;而高于5级风时,云团以顶部卷吸为主,气云表现为云团坍塌、中间高两端低,此时气云垂直风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而减小。初步建立了LNG蒸气云爆炸风险范围与冻伤区域和泄漏时间、环境风速的函数关系,可为爆炸风险区域和低温冻伤区域的预测提供理论支撑。  相似文献   

9.
为了减小液化石油气沸腾液体扩展蒸汽云爆炸事故后果,采用ALOHA软件对液化石油气储罐泄漏事故进行研究,基于液化石油气泄漏量、空气湿度、风速、储存温度等爆炸事故后果影响因素进行数值模拟。研究结果表明:液化石油气泄漏量越大,沸腾液体扩展蒸汽云爆炸事故产生的火球直径越大,燃烧时间或热辐射时间越长,且造成的危害范围越大,事故后果越严重;随着空气湿度增加,事故影响的范围逐渐减小,事故后果相对减小;随着液化石油气储存温度增加,事故影响范围逐渐减小;风速对于事故影响范围无影响;空气湿度、储存温度及风速对火球直径及火球燃烧时间无影响。  相似文献   

10.
The siting of facilities handling liquefied natural gas (LNG), whether for liquefaction, storage or regasification purposes, requires the hazards from potential releases to be evaluated. One of the consequences of an LNG release is the creation of a flammable vapor cloud, that may be pushed beyond the facility boundaries by the wind and thus present a hazard to the public. Therefore, numerical models are required to determine the footprint that may be covered by a flammable vapor cloud as a result of an LNG release. Several new models have been used in recent years for this type of simulations. This prompted the development of the “Model evaluation protocol for LNG vapor dispersion models” (MEP): a procedure aimed at evaluating quantitatively the ability of a model to accurately predict the dispersion of an LNG vapor cloud.This paper summarizes the MEP requirements and presents the results obtained from the application of the MEP to a computational fluid dynamics (CFD) model – FLACS. The entire set of 33 experiments included in the model validation database were simulated using FLACS. The simulation results are reported and compared with the experimental data. A set of statistical performance measures are calculated based on the FLACS simulation results and compared with the acceptability criteria established in the MEP. The results of the evaluation demonstrate that FLACS can be considered a suitable model to accurately simulate the dispersion of vapor from an LNG release.  相似文献   

11.
A dispersion of fine particles in the air is needed for a dust explosion to occur since an explosion is the fast combustion of particles in the air. When particles are poorly dispersed, agglomerated, or their concentration is low, the combustion velocity decreases, and deflagration would not occur. The combustion rate is strictly related to dust concentration. Therefore, the maximum explosion pressure rise occurs at dust concentration close to stoichiometric. Conversely, Minimum Explosion Concentration (MEC) is the lower limit at which self-sustained combustion and a pressure rise are possible. Dust explosion tests are designed to reproduce the dispersion and generation of dust clouds in industrial ambiences by using dispersion devices activated by pressurised air pulses. The resulting dust cloud, which has a marked transient character, is considered representative of real clouds by current standards. Over time, several studies have been carried out to optimise these devices (e.g. to reduce the inhomogeneity of the cloud in the 20 L sphere). The Minimum Ignition Energy (MIE) of dust is measured using the Mike3 modified Hartmann tube, where the ignition attempt is made 60–180 ms after dust dispersion regardless of dust characteristics.This work investigates the dust clouds’ actual behaviour inside the modified Hartmann tube before ignition using high-velocity video movies and a new image post-treatment method called Image Subtraction Method (ISM). Movies are recorded with high-speed cameras at a framerate of 2000 fps and elaborated with an on-purpose developed LabVIEW® code. Concentration (mass per volume) and dispersion pressure are varied to evaluate their effect on dust clouds. Maise starch, iron powder and silica powder are chosen to investigate the effect of particle density and size on the cloud structure and turbulence. This approach will help to investigate the structure of the dust cloud, the shape and size of the particle lumps and the change in dust concentration over time. In addition, information on the actual concentration and cloud turbulence at the ignition location and delay time were obtained, which may help identify the local turbulence scale and widen the characterisation of the cloud generated in the Hartmann tube.  相似文献   

12.
Leakage and explosion of hazardous chemicals during road transportation can cause serious building damage and casualties, and adoption of highly-efficient emergency rescue measures plays a critical role in reducing accidental hazards. Considering a liquefied petroleum gas (LPG) transport tanker explosion accident that occurred in Wenling, Zhejiang Province, China on June 13, 2020 as example, this study proposes a risk assessment framework. This framework recreates the leakage and explosion of the accident process using FLACS v10.9, suggests plans for evacuation, describes the rescue areas of different levels, and explores the influence of environmental factors on the evacuation and rescue areas. The results show that simulated and predicted distributions of fuel vapour cloud concentration and explosion overpressure can provide a reference basis for rapid rescue activities; the characterization of the dynamic effects of wind speed, wind direction, and temperature with respect to the evacuation and rescue areas can be used as theoretical support for on-site adjustment of rescue forces. The role of obstacles can prevent the expansion of the evacuation areas under low wind-speed conditions, and the presence of highly congested obstacles determines the level of the rescue area. The results obtained are important for the risk analysis and the development of emergency rescue measures in case of explosion accidents associated with transportation of hazardous chemicals on high-hazard and high-sensitive road sections.  相似文献   

13.
The majority of powders that are used in the processing industries are combustible (also referred to as flammable, explosible). An explosion will occur if the concentration of the combustible dust that is suspended in air is sufficient to propagate flame when ignited by a sufficiently energetic ignition source.A systematic approach to identifying dust cloud explosion safety against their consequences generally involves:-Identification of locations where combustible dust cloud atmospheres could be present-Understanding of the explosion characteristics of the dust(s)-Identification of potential ignition sources that could be present under normal and abnormal conditions-Proper process and facility design to eliminate and/or minimize the occurrence of dust explosions and protect people and facilities against their consequences-Adequate maintenance of facilities to prevent ignition sources and minimize dust releaseThis presentation will discuss the conditions that are required for dust cloud explosions to occur and presents a well-tried approach to identify, assess, and eliminate/control dust explosion hazards in facilities.  相似文献   

14.
15.
In this paper, safety distances around pipelines transmitting liquefied petroleum gas and pressurized natural gas are determined considering the possible outcomes of an accidental event associated with fuel gas release from pressurized transmission systems. Possible outcomes of an accidental fuel gas release were determined by performing the Event Tree Analysis approach. Safety distances were computed for two pipeline transmission systems of pressurized natural gas and liquefied petroleum gas existing in Greece using real data given by Greek Refineries and the Greek Public Gas Enterprise. The software packages chetah and breeze were used for thermochemical mixture properties estimation and quantitative consequence assessment, respectively. Safety distance determination was performed considering jet fire and gas dispersion to the lower flammable limit as the worst-case scenarios corresponding to immediate and delayed cloud ignition. The results showed that the jet fire scenario should be considered as the limiter for safety distances determination in the vicinity of natural and petroleum gas pipelines. Based on this conclusion, the obtained results were further treated to yield functional diagrams for prompt safety distance estimation. In addition, qualitative conclusions were made regarding the effect of atmospheric conditions on possible events. Thus, wind velocity was found to dominate during a jet fire event suppressing the thermal radiation effect, whereas gas dispersion was found to be affected mainly by solar radiation that favors the faster dissolution of fuel gas below the lower flammable limit.  相似文献   

16.
17.
通过实验研究了可燃气体(液体蒸气)的爆炸极限规律,从全新的角度分析了各种浓度可燃气体(液体蒸气)的最大允许氧含量的规律,并运用数值分析原理拟合出其规律函数,可从理论上求得各种浓度可燃气体(液体蒸气)的最大允许氧含量值。通过爆炸极限和最大允许氧含量规律的对比研究,分析了两者相辅相成的重要关系,指出两者从不同角度界定了可燃气体(液体蒸气)的爆炸范围,是衡量可燃气体(液体蒸气)爆炸危险性的两个重要参数。  相似文献   

18.
Installation of effective safety measures to prevent and mitigate an accidental LNG release is critical. Water curtains are usually inexpensive, simple and reliable and currently have been recognized as an efficient technique to control and mitigate various hazards in the process industries including LNG industry. Actions of a water spray consist of a combination of several physical mechanisms. Detailed analysis of the complex mechanisms and the effects of water spray features to control and mitigate potential LNG vapor cloud are still unclear. This paper discusses the experimental research conducted by MKOPSC to study the physical phenomena involved and the effect of different types of water curtains parameters when applied for LNG vapor. The data from medium scale out-door experiments at the Brayton Fire Training School (BFTF), Texas, are summarized here to understand the relative importance of induced mechanical mixing effects, dilution with air, and heat transfer between water droplets and the LNG vapor. Field test results have determined that water curtains can reduce the concentration of the LNG vapor cloud. Due to the water curtain mechanisms of entrainment of air, dilution of vapor with entrained air, transfer of momentum and heat to the gas cloud, water curtain can disperse LNG vapor cloud to some extent.  相似文献   

19.
20.
液化天然气泄漏扩散模型比较   总被引:4,自引:2,他引:4  
重气扩散的SLAB、DEGADIS和Fluent模型被应用于LNG泄漏扩散实验的模拟过程中,以Coyote3和5为例,对各模型模拟的体积分数随时间的变化与实验值进行了对比,结果表明Fluent模拟的结果最为接近实验值,SLAB模拟结果次之,由于模拟假设风速和风向不变致使模拟结果没有实验结果所存在的频繁波动。文中最后对各模型的统计误差FB,MG,VG,MRSE,NMSE以及FAC2进行了计算,分析结果表明三类模型模拟的结果与实验值一致,但结果都偏高,相比较而言,Fluent的结果更准确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号