首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
从厌氧发酵污泥中筛选到一组高效、传代稳定的厌氧纤维素降解复合菌系L-3.该复合菌系的内切葡聚糖酶活(Cx)、滤纸酶活(FPA)、外切葡聚糖酶活(C1)、β-葡聚糖苷酶活(β-glucodase)分别为0.216、0.101、0.132、0.002U/mL;该复合菌系可使滤纸在42h内溃烂,并能在降解纤维素的同时产生氢气,气体中氢气含量最高可达70.2%,d13时滤纸失重率为70.6%.DGGE结果表明,该复合菌系主要由14种菌组成.在所选实验条件内,该复合菌系产纤维素降解酶的最适条件为:最佳碳源为滤纸,最佳氮源为硫酸铵,温度36℃,pH6.5~7.0,接种量5%.  相似文献   

2.
混合菌对石油的降解   总被引:16,自引:0,他引:16  
从含油污水中分离得到4株能高效降解石油的微生物菌株(X2、X3、X4、X5),经鉴定,4株菌分别属于黄单胞菌属(Xanthomonas sp.)、动胶菌属(Zoogloea sp.)、芽孢杆菌属(Bacillus sp.)和邻单胞菌属(Plesiomonas sp.).通过观察4株菌在原油培养基中的生长变化过程,确定了其中的优势菌;并对4株菌进行复配实验以确定各株菌混合后的石油降解效果;用正交实验法确定达到最佳石油降解效果各菌的投加量;通过对残油的Gc-MS测定分析,确定各菌在降解石油时所起的作用.结果表明,混合菌株中菌X4为优势菌,且有高的降解效果(达68,60%),其它3株降解率不高的菌混合投加也能达到较高的降解效果(达63.17%),菌X4是混合菌株维持高降解率的关键;达到最佳降解效果的各菌投加量分别为0.1%、0.1%、0.5%、2.0%;菌X2和菌X3降解C12-C16直链烃和少量支链烃,菌X4和菌X5对C12-C22直链烃有好的降解效果.图2表4参10  相似文献   

3.
该研究旨在探索不同纤维素降解菌对玉米秸秆降解效果的差异性,为秸秆资源化利用提供参考。利用筛选自宁夏秸秆堆、畜粪和土壤中的四株纤维素降解菌,分别为黄曲霉(Aspergillusflavus)Z5-3菌株,非洲哈茨木霉(Trichoderma afroharzianum)Z6-4菌株,藤黄单胞菌(Luteimonas sp.)X11-1菌株,施氏假单胞菌(Pseudomonas stutzeri)X3-5-1菌株,通过室内控温秸秆堆肥发酵试验,研究添加不同纤维素降解菌后堆肥温度、pH值、碳损失、氮损失、有效养分含量的变化规律。试验结果表明,与对照(不加菌处理)比较,加菌处理提前1-2 d进入高温期,最高温度提高了0.3-1.3℃,且细菌处理较真菌处理提前1 d进入高温期,最高温度提高了0.5-0.7℃。pH值总体呈先增加后降低的趋势,且在高温期达到最大值。与对照相比,加菌处理NH3和CO2累积释放量具有降低趋势。以全氮含量变化计,细菌X11-1、X3-5-1处理的氮损失分别为26.14%和26.57%,真菌Z5-3、Z6-4处理分别为36.49%和34.19%,表明添加不同纤维素降解菌可不同程度地降低堆肥物料中的碳损失和氮损失,其中细菌处理保氮效果显著优于真菌处理。与对照相比,细菌X11-1、X3-5-1处理、真菌Z5-3、Z6-4处理分别提前腐熟5、2、2、2d,表明添加纤维素降解菌可减少堆肥物腐熟时间,促进物料养分浓缩。综合判断,玉米秸秆堆肥中加入纤维素降解菌,有利于降低物料的碳、氮损失,且细菌的保氮效果优于真菌,其藤黄单胞菌X11-1处理最先达到腐熟,为最佳处理。  相似文献   

4.
一株选择性降解木质素菌的筛选及其对玉米秸秆的降解   总被引:4,自引:0,他引:4  
以玉米秸秆为基质,对15株白腐真菌进行了初步筛选,从中获得一株选择性系数较高的菌株Y10,经ITS-5.8SrDNA序列分析,初步鉴定为Cerrena sp.,并研究了该菌在30 d培养期内降解玉米秸秆中木质纤维素的情况.结果表明,菌株Y10对玉米秸秆中木质素和半纤维素的降解速率明显高于纤维素;在30 d的培养过程中,该菌对玉米秸秆降解的选择性系数都大于1,d 15选择性系数最高为3.88.紫外光谱和红外光谱分析结果表明,经菌株Y10降解后玉米秸秆的化学成分发生了变化,且对木质素的降解程度要大于对纤维素的降解程度.图4表3参17  相似文献   

5.
从石油污染土壤中分离到一株菲降解菌2F5-2.根据该菌株生理生化特征和16S rDNA序列相似性分析,将其初步鉴定为鞘氨醇杆菌属(Sphingobium sp.).该菌株在10 h内对100 mg/L的菲的降解率为100%.降解菲的最适温度为30℃,最适pH为7.对降解途径的初步研究显示,该菌株通过水杨酸途径降解菲.克隆了编码芳香烃双加氧酶α亚基的基因phdA,它与菌株Sphingomonas sp.P2、Sphingobium yanoikuyae B1、Sphingomonas sp.ZP1中phdA的同源性分别为97.9%、98%和100%,表明该基因具有保守性.图6参16  相似文献   

6.
糠醛是木质纤维素转化过程中产生的有毒的代谢抑制物,能阻碍菌株正常发酵,增加发酵成本.为提高发酵菌株耐受糠醛的能力,促进对木质纤维素的高效转化,以糠醛为耐受物添加到培养基中,竹虫幼虫肠道作为分离源,经刚果红染色法初步筛选,分离到一株可耐受糠醛的纤维素降解菌株BREC-11;通过形态学观察、生理生化分析、细胞化学分析、16S rDNA序列比对等多相分类学方法鉴定;进一步进行了不同浓度糠醛耐受试验研究,并测定菌株的滤纸酶活(FPA)、CMC酶活、纤维二糖酶活(β-G).确定菌株BREC-11属于芽孢杆菌属的一个种,将其定名为Bacillussiamensis BREC-11.菌株BREC-11在含3.5 g/L糠醛的培养基中可以生长;在3.5 g/L糠醛的耐受浓度下,在30℃、150 r/min培养2 d后,滤纸酶活达到0.1 U/m L,CMC酶活达到0.21 U/m L,纤维二糖酶活达到0.07 U/m L.本研究表明BREC-11是一株耐受糠醛的纤维素降解菌株,在生物炼制过程中具有一定的应用潜力.  相似文献   

7.
为了缩短堆肥时间、提高堆肥产品质量,从病死猪好氧堆肥样品中筛选能高效降解蛋白质和脂肪的安全菌株,经拮抗验证后构建出病死猪堆肥高效降解复合菌系并进行现场堆肥试验.结果显示通过分离纯化共获得36株具有尸体降解能力的安全菌株,经酶活性测定复筛出10株具有较高蛋白酶及脂肪酶活性的菌株,对其进行菌种鉴定及菌株间拮抗研究后,混合构建为5组复合菌系,分别为A、B、C、D和E.通过比较复合菌系的蛋白酶及脂肪酶活性大小,进一步选择优选复合菌系E进行现场堆肥试验,结果表明堆肥期间对照组和接菌各组(2%和4%)最高温度分别达到约56.3、60.8和61.2℃;低剂量和高剂量接菌组堆肥温度达到55.0℃以上的高温天数均持续约7 d,显著高于对照组的3 d(P 0.01);堆肥结束时,对照组和接菌各组(2%和4%)降解率分别达到78.7%、97.7%和98.0%.本研究构建的复合菌系E可有效提高堆肥温度并延长高温维持时间,加速病死猪的降解.(图5表2参30)  相似文献   

8.
为揭示多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)降解微生物资源的多样性和石油降解菌群的优势菌,研究了从南海沉积物中分离得到的一株PAHs降解菌D22F的降解特性及其在石油降解菌群D22-1中的生态位.对菌株D22F进行16S rRNA基因同源性分析及透射电镜观察以初步确定其种属,通过培养法、气相色谱质谱联用(GC-MS)测定其多环芳烃降解范围和降解率,通过简并引物PCR扩增其PAHs双加氧酶大亚基基因片段并进行系统发育分析,采用变性梯度凝胶电泳(DGGE)监测石油降解菌群中的优势菌.结果表明,与菌株D22F的16S rRNA基因相似度最高的模式株为产卟啉杆菌属Porphyrobacter tepidarius DSM 10594T(AF465839;98.55%).该菌株能降解萘、甲基萘、苊、硫芴、菲、蒽等;对初始浓度为0.2 g/L菲10 d后的降解率可达90%以上.从其基因组DNA中克隆到的PAHs起始双加氧酶大亚基基因phnAc与Novosphingobium aromaticivorans DSM 12444中的质粒pNL1(CP000676)上的bphA1f基因相似度最高,达到99.41%.DGGE谱图显示,菌株D22F是石油降解菌群中的3种优势菌之一,在传代菌群中可稳定存在.Porphyrobacter sp.D22F为产卟啉杆菌属(Porphyrobacter)中首株以低分子量PAHs为唯一碳源和能源的菌株,是石油降解菌群的优势菌.  相似文献   

9.
低温纤维素降解菌的分离与鉴定   总被引:2,自引:0,他引:2  
对内蒙古部分地区土壤中低温降解纤维素的微生物进行研究,以期获得一些高酶活的低温纤维素酶产生菌.采用纯培养的方法,在10℃下培养获得纯培养物.以细菌16S rDNA通用引物PCR扩增后进行序列同源性比对确定种属.以DNS法测定纤维素酶活性,并对酶活较高的菌株进行产酶条件的优化.结果共分离得到55株可低温降解纤维素的菌株,16S rDNA序列分析表明它们分别属于γ-变形菌纲(γ-Proteobacteria)、硬壁菌门(Firmicutes)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)以及β-变形菌纲(β-Proteobacteria).该55株菌的纤维素酶活性均在22℃下最高.其中菌株CF11在10℃下的酶活在分离得到的55株细菌中最高.通过优化,菌株CF11产纤维素酶的最佳条件初步确定为pH值为6.5,培养时间为10 d,并且是以酵母提取物作为氮源,其纤维素酶活为58.091 IU.因此菌株CF11是一株极具开发潜力的低温纤维素酶产生菌.  相似文献   

10.
木质素的有效降解是秸秆等农业废物减量化及资源化利用的难点.采用连续驯化培养的方法,从农业废物堆肥过程升温、降温和腐熟3个阶段的微生物菌群中分别筛选驯化出3组具有木质素降解能力的复合菌MC1、MC2和MC3.通过初筛和复筛实验,筛选出一组性能稳定并具有高效木质素降解能力的复合菌,并对其继代培养的稳定性进行了验证.结果表明,从堆肥升温阶段筛选出的复合菌MC1的木质素降解能力最强.在37℃静置条件下液态发酵培养14d,d6时复合菌MC1各酶活值均达到最大,其中木质素过氧化物酶酶活为258.37UL-1,锰过氧化物酶酶活486.39UL-1,漆酶酶活为49.25UL-1;d14时木质素降解率达到36.25%.继代培养实验结果表明复合菌MC1具有较好的稳定性.图2表1参19  相似文献   

11.
草鱼肠道纤维素酶产生菌主要种类的分离与鉴定   总被引:2,自引:0,他引:2  
从我国特有的草鱼肠道内分离到纤维素酶产生菌,其中4株具有较高的纤维素分解能力,测量了其羧甲基纤维素酶(CMCase)、棉花酶和滤纸酶(FPase)活性,并进行了种类鉴定.结果表明,草鱼肠道具有一定的纤维素分解能力,可能来自于肠道细菌所产生的外源性纤维素酶的协同作用;草鱼肠道内纤维素分解菌具有较高酶活性;不同菌株所产生的相同纤维素酶的活性存在差异;其中,X7的CMCase活性最高,达0.83 U/mL,X5的棉花酶活性最高,达0.87U/mL,X8的FPase活性最高,达0.54 U/mL.4种菌株的菌落形态有差异,经16S rRNA基因鉴定,X5、X6、X7为枯草芽胞杆菌(Bacillus subtilis),X8为阿氏肠杆菌(Enterobacter asburiae).图6表3参19  相似文献   

12.
产氢细菌是厌氧发酵过程中重要的功能微生物.将分离自纤维素降解产甲烷复合菌系FSC的产氢细菌FSC-15回补至复合菌系,通过监测氢气产量、甲烷产量、脂肪酸浓度及秸秆降解效率,探究产氢细菌对水稻秸秆水解产甲烷代谢及微生物群落结构的影响.结果显示:添加菌株FSC-15使FSC中纤维素、半纤维素和木质素降解率分别提高了17.33%、28.61%和47.21%,对复合菌系FSC中秸秆降解效率有一定促进作用.培养第3天,氢气产量相比复合菌系FSC提高了41.18%,为产甲烷菌提供更充足的底物,使甲烷产量提高1倍.高通量测序结果显示,Ruminococcaceae和Methanobacteriaceae分别是水稻秸秆厌氧发酵产甲烷体系中水解纤维素和产甲烷的主要类群,Methanobacteriaceae是厌氧发酵体系挥发酸含量较高时产甲烷的主要物种,补加产氢细菌FSC-15对厌氧降解纤维素产甲烷菌系中的细菌群落结构无明显影响,但可以改变古菌的物种多样性及丰度.本研究证明向水稻秸秆厌氧发酵体系补加功能微生物能有效提高体系甲烷产量,可为调控水稻秸秆厌氧消化技术提供理论支撑.  相似文献   

13.
以青藏高原湿地若尔盖地区不同生境土壤为材料,通过富集,计算降解圈个数,分析该地区纤维素降解菌的含量.分离得到15株具有纤维素降解能力的菌株,从中复筛得到一株降解能力较强的菌株3C-6.12,经16S rRNA和Biolog鉴定为野油菜黄单胞菌(Xanthomonas campestris).该菌株在以质量比例3:2的麸皮与玉米芯为发酵培养基时,酶活最高为66.44U/mL,最适pH值为6~8,最佳生长温度为30℃.该菌株的成功选育为后续高效、充分利用纤维素类物质生产生物能源提供了很好的菌种来源.  相似文献   

14.
烷烃降解菌的筛选、鉴定及优势菌株的降解特性   总被引:1,自引:0,他引:1  
以正庚烷为唯一碳源,从长期受到石油污染的土壤中筛选获得可利用正庚烷的微生物14株.通过形态观察和16S rDNA序列比对,鉴定G2、G9、G14为红球菌属,G3、G27为人苍白杆菌属,G4、G7为芽孢杆菌属,G5、G10、G15、G25为节杆菌属,G16为缺陷短波单胞菌,G17、G22为嗜麦芽寡养单胞菌属.通过考察其降解烷烃的能力,确定Rhodococcus sp.G2为烷烃降解优势菌株.该菌株可代谢庚烷获得最大菌体浓度D600 nm=7.51.同时该菌对不同碳链长度的烷烃,如十二烷、十六烷、煤油和二甲苯均具有较强的降解能力,以十二烷为碳源的最大比生长速率为0.37 h-1,最高菌体浓度为D600 nm=12.00,在正十六烷中生长,最大比生长速率为0.23 h-1,在煤油中生长,最大比生长速率为0.14 h-1,在以二甲苯为唯一碳源时,D600 nm也可达到1.00左右.研究表明该菌株对于石油污染土壤的生物修复有很大的应用前景.图6表2参9  相似文献   

15.
从巴丹吉林沙漠盐湖表层沉积物中筛选到一株高效耐盐苯酚降解菌CL.测定了菌株CL的生理生化指标、16S rRNA基因序列,通过动力学模型探究了该菌株的生长和苯酚降解特性,同时考察了固定化对其耐受及降解苯酚能力的影响.结果表明,菌株CL属于葡萄球菌属(Staphylococcus sp.),在温度30℃、pH 7.0—8.0、盐度0—10%和苯酚浓度100—200 mg·L~(-1)条件下,该菌株能高效降解苯酚,其降解率均在85%以上.菌株CL对不同浓度苯酚的降解符合Haldane模型,其最大比降解速率和抑制常数分别为0.32 h~(-1)和351.70 mg·L~(-1),同时该菌株在不同盐度下对苯酚的降解符合Ghose and Tyagi模型.固定化可以明显增加菌株CL对苯酚的降解和耐受能力.菌株CL在高盐环境下能够高效降解苯酚,具有生物处理高盐含酚废水的潜力.  相似文献   

16.
从化工厂污水处理池污泥中分离到一株能高效降解硝基苯的菌株XY-1,通过形态观察、生理生化特征和16SrDNA序列同源性分析,将该菌株鉴定为假单胞菌属(Pseudomonas sp.).该菌株能以硝基苯为唯一碳源、氮源和能源生长,硝基苯初始浓度为200 mg/L时,20 h降解率可达97%.该菌在温度25~35℃、pH 7.0~9.0范围内均能高效降解硝基苯,并且对对氯硝基苯、对氯苯胺也有良好的降解效果.测序分析表明,克隆到了该菌中的硝基苯还原酶基因,推测该菌的降解途径是硝基苯部分还原途径.图6参19  相似文献   

17.
以往对多菌灵降解菌Rhodococcus qingshengii sp.nov.djl-6的降解途径研究显示,该菌株首先通过多菌灵水解酶将多菌灵水解成二氨基苯并咪唑,从而对多菌灵进行脱毒.为开发酶制剂并有效应用于环境中残留污染物多菌灵的降解,比较了不同提取方法(高压细胞破碎、超声波破碎和添加溶菌酶破碎)对多菌灵水解酶提取效率的影响,并对其酶学特性进行了初步研究.结果表明,djl-6菌株在LB培养基中培养72~84 h,生长量和产酶量均达到最大值.采用超声波破碎提取酶的效率较高(蛋白浓度为7.92 mg/mL),但酶活损失较大(比酶活只有1.2 U/μg protein).多菌灵水解酶属于一种胞内组成型酶.该酶水解多菌灵的最适pH值为7.0,最适温度为30℃,Zn2+和K+对酶活有一定的抑制作用.  相似文献   

18.
海洋石油降解菌的筛选与降解特性   总被引:5,自引:0,他引:5  
用采自山东胜利油田的石油污染水体,以原油为唯一碳源,经人工海水培养基富集培养,得到lO株细菌.通过降解率的测定,发现其中一株细菌HB-1具有较强的石油降解能力,200 r/min振荡培养6 d,其原油的降解率达54.74%.根据菌落特征、菌体形态、生理生化特性和16S rDNA序列分析,确定HB-1为不动杆菌属(Acinetobacter sp.).进一步实验表明,该菌株最适宜牛长和降解石油的条件为:温度25~32℃,初始pH值6.5~7.5,盐度3%,此条件符合实际海洋环境的要求.图6表2参22  相似文献   

19.
梁浩花  王亚娟  陶红  张小红 《环境化学》2019,38(12):2808-2818
选择邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二丁酯(DnBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)作为目标污染物,采用富集驯化法从设施菜地土壤中筛选出1株可同时降解DMP、DnBP和DEHP的细菌MB1.经形态、生理生化特征及16S rDNA序列分析,初步鉴定为微杆菌属(Microbacterium sp.).通过正交试验研究了该菌株的最优降解条件以及最优条件下该菌株的生长曲线和降解曲线,最后在培养条件下研究了该菌株对人工污染土壤中邻苯二甲酸酯的降解特性.结果表明,菌株MB1的最优降解条件为:pH值为8,温度为25℃,接菌量为5%,每种邻苯二甲酸酯浓度为300 mg·L~(-1).在此最优条件下该菌株呈S型曲线增长,7 d后无机盐培养液中DMP、DnBP和DEHP的降解率分别为99.62%%、99.65%和55.26%.人工污染土壤中空白试验和投加菌株试验结果为:在不添加菌液的处理中,灭菌土壤21 d时DMP、DnBP和DEHP的降解率分别为3.86%、4.19%和2.01%;未灭菌土壤21 d时对DMP、DnBP和DEHP的降解率分别为4.82%、5.99%和3.44%.在添加菌液的处理中,21 d时土壤灭菌处理中DMP、DnBP和DEHP的降解率分别达94.45%、95.65%和39.21%;而土壤未灭菌处理中DMP、DnBP和DEHP的降解率分别达94.93%、95.99%和41.16%.该结果表明:土壤中土著微生物仅能降解微量PAEs,菌株MB1对土壤中DMP、DnBP和DEHP等3种PAEs污染物具有较为高效的降解能力,未灭菌土壤中邻苯二甲酸酯的降解效果略高于灭菌土壤.  相似文献   

20.
在我国高纬度和高海拔地区,低温微生物污染介质的长期高效稳定修复的应用前景广阔,但特定场景下的菌种资源挖掘还处于初期阶段。以污染土壤中常见的喹诺酮类抗生素—恩诺沙星为目标污染物,从低温地区畜禽粪便堆放地土壤中筛选得到4株恩诺沙星低温高效降解菌Z(Providencia sp.,普罗威登斯菌属)、H5(Enterobacter sp.,肠杆菌属)、H35(Providencia sp.,普罗威登斯菌属)、Y(Alcaligenes sp.,产碱杆菌属,嗜盐菌),并评估了这4种菌株的降解效率。结果表明,4种菌株在中性或低碱环境(畜禽粪便堆放地)、4~15℃的温度范围内均能生长;低温较常温条件下显著抑制了4株菌的生长和对恩诺沙星的降解。4、8、15℃条件下无菌对照组恩诺沙星的自然降解率分别为10.9%、22.8%和40.6%。4℃条件下,投加量w为5%的Z、H5、H35和Y对恩诺沙星的降解率在第14天达到峰值,分别为33.4%、42.1%、38.1%和34.3%。在8℃条件下,Z、H5和Y对恩诺沙星的降解率在第12天达到峰值,分别为49.6%、47.9%和48.1%;H35则在第14天达到峰值...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号