首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为评估成都市2017年夏季(6-8月)开展的臭氧防治行动措施对空气质量的改善效果,采用在线监测系统对成都市环境空气中VOCs物种进行监测,对比分析VOCs污染特征、OFP(臭氧生成潜势),并利用PMF(正矩阵因子法)模型对VOCs主要来源进行解析.结果表明:2017年8月$φ$(VOCs)平均值为31.85×10-9,比2016年同期下降了32%,其中,$φ$(芳香烃)和$φ$(卤代烃)平均值下降最为明显.$φ$(VOCs)日变化呈双峰型,分别在每日09:00和23:00左右达峰值,臭氧防治行动期间$φ$(VOCs)月均小时值低于2016年同期.VOCs的OFP敏感性物种以烯烃为主,占总VOCs OFP贡献的48%.2017年8月成都市OFP为61.89×10-9,比2016年同期下降44%.VOCs源解析结果发现,2017年8月油气挥发源、有机溶剂使用源、工业源、生物质燃烧源等排放占比均有所下降,而机动车排放源和天然源的排放占比增加.研究显示,成都市2017年夏季臭氧防治行动对成都市大气VOCs排放有明显的控制效果.   相似文献   

2.
2021年2~4月,利用AQMS-900VCM大气挥发性有机物在线监测系统对南昌市经济技术开发区大气中114种挥发性有机化合物(VOCs)进行了在线观测,分析了春季南昌市大气中VOCs浓度水平、日变化,估算了各种VOCs的臭氧生成潜势(OFP),并基于PMF模型探讨了 VOCs的来源.结果表明,南昌市经济技术开发区20...  相似文献   

3.
挥发性有机物是O3重要的前体物之一,在O3生成方面起着决定性作用.为研究天津郊区VOCs特征及其对O3生成的作用,利用SyntechSpectras GC955在线监测系统监测天津市津南区54种VOCs的浓度,并结合最大增量活性因子计算VOCs的臭氧生成潜力.结果表明, 2018年7月津南区VOCs总浓度为(32.33±23.77)μg·m-3,其中烷烃质量浓度最高,芳香烃和烯烃次之,炔烃最低,丙烷、乙烯和甲苯分列VOCs质量浓度的前3位.观测期间TVOC的OFP为107.81μg·m-3,烯烃对OFP的贡献最大,为55.80%,乙烯、异戊二烯和甲苯分列OFP贡献率的前3位.后向轨迹分析表明,不同来向和性质的气团下TVOC及其OFP不同.VOCs/NOx体积分数比值估算表明,观测期间O3生成对VOCs较为敏感.乙苯/间,对-二甲苯和乙烷/乙炔等特定物种对浓度比值的变化表明, 3次O3污染过程均伴随VOCs的老化过...  相似文献   

4.
为探究近地层大气日间VOCs(挥发性有机物)垂直分布特征以及对臭氧(O3)生成的影响,2021年9月,在深圳市气象梯度塔的11个垂直梯度上开展了6轮VOCs离线罐采样,并应用气相色谱质谱联用仪对102种组分进行定量分析.结果表明,从地面(0 m)到高空(345 m)VOCs总体污染水平相近,近地层大气垂直混合较为均匀;但烯烃浓度随高度增加下降明显,主要受人为源排放的乙烯变化主导;高反应性的OVOCs(含氧挥发性有机物)在较高垂直梯度上(240~345 m)增长明显,可能是导致O3在高空浓度显著大于地面的原因之一.各垂直梯度上的臭氧生成潜势(OFP)占比排序均为:OVOCs>芳香烃>烷烃>烯烃>卤代烃>炔烃,乙酸乙酯、乙醛和甲苯是促进O3生成的优势物种.日变化方面,大多数情况下不同高度的总挥发性有机物(TVOCs)浓度均在9:00最高,推测主要受早高峰时段交通尾气排放影响;随着光化学反应的进行,OVOCs浓度在13:00达到最大,推动O3浓度于午间达到峰值.X/E(间,对...  相似文献   

5.
于2019年11月6~9日开展了深圳全市11点位105种VOCs组分的离线观测,评估了深圳市不同区域的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)的空间分布特征.结果表明:观测期间深圳市总VOCs,总OFP和总SOAFP分别为44.3×10-9,272.6和1.1μg/m3.从空间分布来看,VOCs,OFP与SOAFP具有相似特征,均呈现西高东低,北高南低的趋势,西北部工业区存在较多工业排放源,是削减VOCs的关键区域.从物种组成来看,体积浓度较高的物种有丙酮、二氯甲烷、乙烷;OFP较高的物种有1,3-丁二烯、甲苯、乙醛;SOAFP较高的物种有甲苯和二甲苯;且甲苯/苯比值表明溶剂排放等工业源对VOCs影响显著.从空间分布差异来看,正丁烷、甲苯和2,3-二甲基丁烷区域差异性较大.综合以上分析得出,正丁烷、异丁烷、甲苯、二甲苯和1,3-丁二烯作为化学活性较高且本地排放特征最显著的物种,是深圳市区域性O3和PM2.5协同防治的关键VOCs组分.  相似文献   

6.
2018年8月采集太原市大气样品,分析太原市夏季大气VOCs的污染特征,并利用最大增量反应活性系数法(MIR系数法)估算了VOCs的臭氧生成潜势(OFP).结果表明,太原市夏季大气VOCs浓度为17.36~89.60μg/m3,其中烷烃占比58.01%、芳香烃占比20.06%、烯烃占比16.52%、炔烃占比5.40%.大气VOCs浓度变化表现为明显的早晚双高峰特征,且以早高峰影响为主.OFP分析显示,烷烃、烯烃、芳香烃、炔烃分别占总OFP的19.16%、47.74%、31.75%、1.35%,C3~C5类烯烃是活性较高的物种,对O3生成贡献较大.  相似文献   

7.
鄂州市大气VOCs污染特征及来源解析   总被引:1,自引:4,他引:1  
2018年3月~2019年2月,在鄂州市主城区采用在线气相色谱仪对102种大气挥发性有机物(VOCs)定量检测,对比分析了VOCs组成、季节变化特征和日变化规律,并利用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP).结果表明,鄂州大气VOCs年均体积分数为(30.78±15.89)×10-9,总体表现为冬季高夏季低,具体表现为烷烃>含氧化合物>卤代烃>烯烃>芳香烃>炔烃.日变化规律表现为夜晚体积分数高于白天,且总体上呈"双峰"分布,芳香烃、卤代烃和OVOCs在00:00至02:00出现"第三峰".对VOCs臭氧生成潜势(OFP)贡献较大的是芳香烃和烯烃,贡献率分别为35.45%和29.5%,其中对OFP贡献率最高的物种为乙烯,达到24.217%.分析VOCs特征物种,发现机动车尾气和溶剂使用是鄂州VOCs的主要来源,其中机动车排放是最主要来源,控制鄂州机动车排放有助于削减大气VOCs活性较大的组分,从而减少臭氧的生成.  相似文献   

8.
为探究热带地区环境空气中挥发性有机物(VOCs)的污染特征,利用三亚市2019年VOCs在线监测数据,全面分析了VOCs的污染特征、来源以及对O3的影响.结果表明:①总挥发性有机物(TVOCs)日均体积分数范围为2.05×10-9~19.74×10-9,且以烷烃(71.4%)和烯烃(20.5%)为主.②VOCs优势物种丙烷、正丁烷、乙烷、异丁烷、乙烯、乙炔、苯和甲苯的体积分数日变化均呈早晚双峰的特征;φ(异戊二烯)呈白天显著高于夜间的特征,其季节性变化规律与光照变化基本一致.③对臭氧生成潜势(OFP)贡献最大的是烯烃(70.6%),其中异戊二烯的OFP贡献率(41.9%)最大,其次是烷烃(19.9%).④春夏季φ(NO2)和φ(VOCs)均较低,难以通过光化学反应生成较高的φ(O3),秋冬季φ(O3)显著升高主要与东北方向污染物传输有关.⑤正交矩阵因子模型(PMF)解析结果表明,VOCs来源分别为交通源(46.52%)、溶剂使用源(18.25%)、植物源(12.36%)、工业源(11.99%)和燃烧源(10.88%).研究显示,三亚市环境空气中φ(VOCs)受交通源排放影响较大,应加强管制以削减环境空气中VOCs活性较大的物种,从而减少O3的生成.   相似文献   

9.
于泡沫塑料鞋制造集中区和周边设置了5个采样点,研究其大气VOCs的污染特征和对臭氧生成的潜在影响.结果显示泡沫塑料制鞋行业大气VOCs组成以烷烃(38.4%)、含氧挥发性有机物(33.5%)和芳香烃(19.5%)为主,80种VOCs浓度为137.1~169.0μg/m3(均值149.1μg/m3).正戊烷、异戊烷、正丁烷、异丁烷、甲醛、甲苯、间/邻二甲苯、丙酮、丁酮、环己酮、甲基丙烯酸甲酯、乙酸乙酯为泡沫塑料鞋制造行业的特征VOCs.总VOCs、特征VOCs类型(含氧挥发性有机物、芳香烃)和特征VOCs组分(甲苯、邻二甲苯、间二甲苯、丁酮、乙酸乙酯)的浓度空间变化趋势依次为污染区>受影响区(下风向)>对照区(上风向).同时,采用最大增量反应活性(MIR)方法估算了VOCs的臭氧生成潜势(OFP),均值为544.6μg/m3,表明泡沫塑料鞋制造导致了周边环境空气VOCs污染且对臭氧生成存在明显潜在影响.  相似文献   

10.
王茜 《环境科学》2024,45(8):4440-4447
为深入了解夏季大气挥发性有机物(VOCs)对O3污染的影响,基于上海城郊点位VOCs、 O3以及气象要素的在线监测数据,开展O3污染时段VOCs的变化特征和活性贡献分析,研究关键气象要素和气团传输对O3和VOCs的影响.结果表明,上海城郊夏季大气φ(VOCs)小时平均值为(20.91 ± 9.82)×10-9,各组分构成最大的是烷烃和OVOCs,占比均为30.2%. O3污染日φ(VOCs)平均值为(23.84 ± 9.69)×10-9,较清洁日上升28.1%.污染日VOCs的OFP为126.9 μg·m-3,较清洁日上升31.9%,其中烯烃OFP贡献率明显上升,丙烯和丙酮等物种较清洁日偏高最多,说明以上组分和物种需要重点加强管控.乙烷和乙炔的比值(E/E)和间/对-二甲苯与乙苯比值(X/E)的变化特征表明:上海城郊地区夏季气团存在明显的区域传输影响,且主要出现在下午和夜间.污染玫瑰图和气团后向轨迹研究结果表明,来自偏南和西南方向的气团对上海城郊VOCs体积分数的传输影响最大,尤其是来自偏南气团的烯烃和OVOCs,以及来自西南方向的芳香烃.  相似文献   

11.
于2016年在中国广东大气超级监测站,开展4个季节的VOCs长时间观测,共获得2142组有效数据,并利用HYSPLIT模型分析珠三角地区VOCs时空分布特征.结果表明,各类VOCs混合比和化学反应活性具有明显的季节变化特点.观测期间,VOCs平均浓度为(18.523±20.978)×10-9,其中,低碳烯烃和苯系物二者混合比之和仅占46%,但贡献了85%的·OH消耗速率(LOH)、82%的臭氧生成潜势(OFP)和97%的二次气溶胶生成潜势(SOAFP).观测站点主要受来自北部内陆地区气团(1#)、西部内陆地区气团(2#)、台湾海峡南端气团(3#)以及南部海洋地区气团(4#)的影响.1#气团中炔烃和苯系物的混合比占比最高,分别达到10%、37%,而3#气团中低碳烷烃的浓度水平最高,达到(8.437±5.561)×10-9.通过估算气团中VOCs的化学反应活性,可以发现,1#气团的VOCs化学反应活性最强,其对O3和SOA的生成贡献最高.1#、2#、3#和4#气团中VOCs的化学反应活性主要由苯系物和低碳烯烃贡献.  相似文献   

12.
于2016年在中国广东大气超级监测站,开展4个季节的VOCs长时间观测,共获得2142组有效数据,并利用HYSPLIT模型分析珠三角地区VOCs时空分布特征.结果表明,各类VOCs混合比和化学反应活性具有明显的季节变化特点.观测期间,VOCs平均浓度为(18.523±20.978)×10-9,其中,低碳烯烃和苯系物二者混合比之和仅占46%,但贡献了85%的·OH消耗速率(LOH)、82%的臭氧生成潜势(OFP)和97%的二次气溶胶生成潜势(SOAFP).观测站点主要受来自北部内陆地区气团(1#)、西部内陆地区气团(2#)、台湾海峡南端气团(3#)以及南部海洋地区气团(4#)的影响.1#气团中炔烃和苯系物的混合比占比最高,分别达到10%、37%,而3#气团中低碳烷烃的浓度水平最高,达到(8.437±5.561)×10-9.通过估算气团中VOCs的化学反应活性,可以发现,1#气团的VOCs化学反应活性最强,其对O3和SOA的生成贡献最高.1#、2#、3#和4#气团中VOCs的化学反应活性主要由苯系物和低碳烯烃贡献.  相似文献   

13.
石油炼化无组织VOCs的排放特征及臭氧生成潜力分析   总被引:3,自引:0,他引:3  
选取我国光化学活跃的珠江三角洲地区(PRD)典型石油炼化工艺的炼油装置、化工装置和污水处理装置,采用离线和在线的多种先进仪器监测其VOCs的无组织排放特征,并采用间、对-二甲苯/苯(X/B)、甲苯/苯(T/B)、乙苯/苯(E/B)比值分析其VOCs的老化特征,采用最大增量反应活性法(MIR)、等效丙烯浓度法和OH自由基反应速率法(LOH)3种方法综合评价其VOCs的化学反应活性及臭氧生成潜势(OFP).研究发现,炼油装置区和化工装置区总挥发性有机物(TVOC)浓度早晚高,中午低;污水处理区呈双峰趋势.3个装置区无组织排放的VOCs中烷烃浓度均占比最高,同一装置区内的不同装置VOCs排放特征不同.石化企业X/B、T/B和E/B值较城区和郊区的高,化工装置区的压缩碱洗装置区(CAW)T/B值最大.石化企业VOCs的活性较城区和郊区的强,其平均OH消耗速率常数为15.22×10-12cm3/(mol·s),最大增量反应活性为4.21mol(O3)/mol(VOC).化工装置区对石化企业OFP总量的贡献最高,为84.83%;其次是污水处理区,12.95%;炼油装置区最低,为2.22%.化工装置区的CAW对石化企业OFP贡献率最高,为34.26%;污水处理区的浮选池(FT)贡献率最低,为0.36%.  相似文献   

14.
南京北郊秋季VOCs及其光化学特征观测研究   总被引:6,自引:21,他引:6  
采用GC5000挥发性有机物在线监测系统和EMS系统,于2011年11月在南京北郊开展了为期一个月的连续观测,分别测量了大气中56种VOCs组分和反应性气体(NOx、CO和O3).结果表明,南京北郊的VOCs小时平均体积分数大约在48.17×10-9,日变化呈明显双峰型特征,受机动车影响比较显著,极小值出现在下午16:00,白天与O3浓度曲线呈负相关;VOCs的平均OH消耗速率常数约为3.26×10-12cm3.(molecule.s)-1,最大增量反应活性约为3.26 mol·mol-1;烯烃对OH消耗速率(LOH)和臭氧生成潜势(OFP)贡献率最大,芳香烃次之,而烷烃在大气中含量最为丰富,却并不是LOH和OFP主要贡献者;VOCs关键活性组分是乙烯、丙烯、1-丁烯、间,对-二甲苯及异戊二烯等物质;臭氧生成过程处于VOCs控制区.  相似文献   

15.
宿迁市VOCs污染特征和来源解析   总被引:2,自引:0,他引:2  
利用2019年8-9月宿迁市4个站点的采样资料,分析了宿迁大气中挥发性有机物(VOCs)的化学组成及其时空分布特征;估算了VOCs的臭氧生成潜势(OFP);并结合PMF受体模型,开展了VOCs来源解析.结果表明,观测期间宿迁市总挥发性有机物(TVOCs)体积分数为8.6×10-9~79.4×10-9,平均体积分数为26.9×10-9,浓度水平较低.VOCs质量浓度表现为乡镇工业区(宿迁技师学院:(29.8±18.4)×10-9) > 城郊工业区(生态化工园:(28.4±20.6)×10-9) > 城市住宅区(宿迁中学:(22.6±11.5)×10-9) > 城市商业区(市供电局:(22.3±15.1)×10-9).各采样点4种组分(烷烃、烯烃、乙炔及芳香烃)日均浓度变化较为一致,且均表现出较为明显的周末效应.宿迁市典型污染物为C2~C5烷烃、乙炔、乙烯、甲苯,间/对-二甲苯,不同采样点的关键组分基本相同,表明VOCs的来源比较稳定.OFP计算表明芳香烃和烯烃是臭氧最大贡献源.特征量比值分析发现,观测期间宿迁市VOCs有明显老化现象.源解析表明交通排放、溶剂涂料和工业过程是宿迁市VOCs的主要来源.  相似文献   

16.
珠江三角洲印刷行业VOCs组分排放清单及关键活性组分   总被引:4,自引:1,他引:4  
根据珠江三角洲地区印刷行业活动数据和不锈钢罐采样-气质联用技术,获取了印刷工艺VOCs成分谱,建立了该地区2010年印刷行业VOCs组分排放清单,研究了不同工艺排放的臭氧生成潜势. 结果表明:该地区2010年印刷行业VOCs排放总量达8591.26t,深圳、东莞、佛山排放量较大.凹印是印刷行业主要VOCs排放工艺,排放量达5762.01t;平印和凸印次之,分别为1954.01和37.82t.不同工艺排放的VOCs组分差异较大,平印工艺排放的VOCs成分中异丙醇含量最多(306.58t),其次为正庚烷(115.87t);苯和甲苯是凸印工艺排放的VOCs成分中含量最大的2种化合物,分别达5.58和4.83t;乙酸乙酯是凹印工艺排放的VOCs成分中的首要化合物,达2482.85t.凸印工艺排放的VOCs单位浓度臭氧潜势最大,达1.30μg/m3,平印和凹印较小,分别为0.89和0.72μg/m3,各工艺排放的含氧有机物对臭氧生成潜势的贡献均为最大.   相似文献   

17.
南京北郊大气VOCs体积分数变化特征   总被引:4,自引:10,他引:4  
安俊琳  朱彬  李用宇 《环境科学》2013,34(12):4504-4512
利用2011-03-01~2012-02-29南京北郊大气VOCs观测资料,对大气VOCs体积分数的时间序列变化特征、光化学活性差异和来源特征进行了研究.结果表明,VOCs体积分数平均为43.52×10-9,并呈现夏季高,冬季低的季节变化.VOCs体积分数呈现夜间高,白天低的日变化特征.VOCs体积分数夜间呈现夏季>秋季>春季>冬季,白天呈现冬季>夏季>春季>秋季.VOCs日变化幅度秋季最大,冬季最小.烷烃和烯烃日变化幅度最大值出现在秋季,芳香烃和炔烃日变幅最大值出现在春季.采用丙烯等量体积分数方法表示,VOCs物种中烯烃含量最高,芳香烃次之,烷烃最小.T/B、E/B和X/B比值平均值分别是1.23、0.95和0.81,反映出影响观测点的气团呈现一定老化程度.以3-甲基戊烷作为机动车排放典型示踪物,估算得到乙烯、甲苯和间,对-二甲苯分别有85%、71%和82%来自非机动车源.  相似文献   

18.
为了解北京怀柔区夏季典型O3污染过程中初始VOCs(挥发性有机物)浓度(以φ计)的特征,识别其关键物种及主要来源,于2016年8月3-11日在中国科学院大学雁栖湖校区教学楼顶开展强化观测,利用光化学物种比值法和连续反应模型法测算观测期间大气初始φ(VOCs),采用MIR(最大增量反应活性)法估算初始VOCs的OFP(O3生成潜势),识别关键物种,并应用PMF(正交矩阵因子)模型对初始VOCs的来源进行解析.结果表明:北京怀柔区O3污染过程中初始φ(VOCs)平均值为25.27×10-9,如忽略化学损失,φ(VOCs)将被低估约18.6%.初始VOCs的总OFP值为144.6×10-9,VOCs物种对总OFP贡献率的顺序依次为醛酮类>烯烃>芳香烃>烷烃,异戊二烯、乙醛、己醛、间/对-二甲苯、甲苯、乙烯、丙烯、1,2,4-三甲苯、丁酮、1,3,5-三甲苯是怀柔区O3形成的关键活性物种.PMF解析结果显示,机动车尾气源对初始φ(VOCs)的贡献率(23.5%)最高,其次是溶剂使用源(18.3%)、植物排放源(18.1%)、工业过程源(17.6%)、生物质燃烧源(12.1%)和煤炭燃烧源(10.5%).研究显示,在北京怀柔区典型O3污染过程中,减少机动车尾气源、溶剂使用源、上风向工业过程源的排放是控制怀柔区VOCs的有效措施,而控制异戊二烯、乙醛、己醛、间/对-二甲苯、甲苯等关键活性物种则是有效抑制VOCs排放对O3生成贡献的重要手段.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号