首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design and the construction of an actual 8.7-m3 pilot/full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas approximately 20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/1000 m3air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.  相似文献   

2.
Volatile organic compounds (VOCs) emitted from surface coatings have caused growing public concern for air quality. Even the low-emitted VOC impact from water-based paints on indoor air quality in urban areas has caused concern. This paper presents experimental data using a mathematical model to simulate dynamic VOC emissions from water-based paints that is based on mass transfer and molecular diffusion theories. A series of field-analogous experiments were carried out to continuously measure the VOCs emitted from two typical water-based paints using a gas chromatography-flame-ionization detector monitor in an artificial wind tunnel system. In the study cases, the mass flux of VOCs emitted from the water-based paints was up to 50 microg/m2sec. It was found that the time needed to completely emit VOCs from water-based paints is just hundreds of seconds. However, the order of magnitude of the VOC emission rate from water-based paints is not lower than that from some dry building materials and solvent-based paints. The experimental data were used to produce a useful semiempirical correlation to estimate the VOC emission rates for water-based paints. This correlation is valid under appropriate conditions as suggested by this work with a statistical deviation of +/- 7.6%. With this correlation, it seems feasible to predict the dynamic emission rates for VOCs during a painting process. This correlation is applicable for assessing the hazardous air pollutant impact on indoor air quality or for environmental risk assessment. Associated with the dynamic VOC emission characterization, the air-exchange rate effect on the VOC emission rates is also discussed.  相似文献   

3.
ABSTRACT

The design and the construction of an actual 8.7-m3 pilot/ full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas ~20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3 air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/ 1000 m3 air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.  相似文献   

4.
Abstract

An approach for measuring point-source emissions of volatile organic compounds (VOCs), acidic vapors, and other species is presented. The amount emitted is determined by directly measuring the actual weight gain of an adsorbent bed over a period of time, which is a cumulative rather than a grabbed sample. As a result, wide fluctuations of concentration and erratic flow behavior during sampling are accommodated with no apparent effect on the accuracy of the measured emission rate. The emission rate is determined by a mass balance including the mass change of the sorbent, as well as the influent and effluent humidities.

Validation tests used a known mass flow rate of vapor in a carrier gas, which was compared with the amount measured. The vapor was a single VOC, a mixture of VOCs, or a mixture of a VOC with water. Conditions studied were the compound or mixture of compounds, concentration, carrier gas, flow rate, and adsorbent. In some tests the VOC was admitted intermittently. The VOCs included n-hexane, acetone, toluene, vinyl acetate, and 1,1,1 trichloroethane. For 105 tests, the average absolute discrepancy of the delivered and measured emission rates was 6.8% and the standard deviation was 3.4%.  相似文献   

5.
An activated carbon moving bed system (10 to 100 acf m air flow) was tested for controlling VOC emissions from a commercial aircraft painting facility. The cross-flow moving adsorbent bed showed a VOC collection efficiency in the 77.1 to 99.6 percent range over a superficial gas velocity range of 27 to 185 ft/min (0.14-0.94 m/sec). The collection efficiencies were neither affected by a change in carbon flow rates from 5 to 8 Ib/hr (2.3 to 3.6 kg/hr) nor by a change in the gas superficial velocity from 27 to 185 ft/min. The VOC concentration in the emission stream from the painting hangar was found to vary by at least a factor of 20 (from 0.18 to 15 ppm) both over the five month period (during which the 15 system tests of about three hours each were conducted) and within a single eight hour work shift.  相似文献   

6.
A study was performed to determine the source of low concentrations of volatile organic compounds (VOCs) detected in groundwater samples at a solid waste management facility. The affected wells were identified as hydraulically upgradient of an old unlined facility, but downgradient of a new clay-lined landfill. These monitoring wells are close to both sites. Subsurface landfill gas migration was identified after a low permeability cap was installed on the older site. Subsurface gas pressure was monitored to identify horizontal landfill gas migration. Monitoring well headspace gases were evaluated to identify depressed oxygen concentrations and methane because of landfill gas migration into the well. Monitoring well headspace gas VOC concentrations were compared to groundwater VOC concentrations to determine the direction of phase transfer. A ratio above 1.0 of the observed well headspace gas concentration of a VOC to the concentration that would be in equilibrium with the groundwater concentration indicates gas-to-water phase transfer within the well. For the major gas-phase and aqueous-phase VOC, cis-1,2-dichloroethene, gas-to-water phase transfer is clearly indicated from the data for two of the four wells. Fifteen other VOCs were detected in monitoring well headspace gases but not in groundwater samples from the four wells studied. Only one compound in one well was detected in the groundwater sample but not in the headspace gases, and only one compound in one well was detected in both matrices at concentrations that suggested water-to-gas phase transfer. This study suggests that if landfill gas is suspected as the source of detected VOCs, monitoring well construction and stratigraphy are important considerations when attempting to differentiate between groundwater contamination by landfill gas and contamination from other sources.  相似文献   

7.
Although widely used in air quality regulatory frameworks, the term “volatile organic compound” (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and U.S. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products.
Implications:The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test methodologies and ambient evaporation. This paper provides ample evidence to warrant a reevaluation of regulatory standards and provides a framework for progressive developments based on reasonable and scientifically justifiable definitions of VOCs.  相似文献   

8.
Compositions of volatile organic compound (VOC) emissions from painting applications and printing processes were sampled and measured by gas chromatography–mass spectrometry/flame ionization detection (GC–MS/FID) in Beijing. Toluene and C8 aromatics were the most abundant species, accounting for 76% of the total VOCs emitted from paint applications. The major species in printing emissions included heavier alkanes and aromatics, such as n-nonane, n-decane, n-undecane, toluene, and m/p-xylene. Measurements of VOCs obtained from furniture paint emissions in 2003 and 2007 suggest a quick decline in benzene levels associated with formulation changes in furniture paints during these years. A comparison of VOC source profiles for painting and printing between Beijing and other parts of the world showed significant region-specific discrepancies, probably because of different market demands and environmental standards. We conducted the evaluation of the source reactivities for various VOC emission sources. The ozone formation potential (OFP) for unit mass of VOCs source emissions is the highest for paint applications. Substituting solvent-based paints by water-based in Beijing will lead to an OFP reduction of 152,000 tons per year, which is more than 1/4 of the OFPs for VOCs emissions from vehicle exhaust in the city.  相似文献   

9.
Closing Remarks     
Abstract

The recent standards of performance for wastewater sources in the Synthetic Organic Chemical Manufacturing Industry (SOCMI), published by the U.S. Environmental Protection Agency (EPA), call for treatment of waste–water containing 500 ppmw volatile organic compounds (VOCs) and operating at flow rates greater than 1.0 liter per minute. There are a number of methods for achieving compliance with the treatment standards for wastewater. Among these is treatment to a VOC concentration of less than 50 ppmw with the removal of total VOC mass from the wastewater stream by 95%. If the wastewater treatment system uses stripping or evaporation, then the unit must be covered and vented to a control device. Emissions from the vent control system must be no greater than 20 ppmw. In this work, a treatment system is designed that would achieve compliance with the published standards. A novel unit operation—thin–film evaporation into a natural gas receiving stream—is used to treat the wastewater stream, while the vapor stream is combusted in a boiler or similar fired unit. The process employs a multimedia approach to minimize total treatment costs.  相似文献   

10.
ABSTRACT

The temporal and longitudinal characteristics of volatile organic compound (VOC) emissions from the aeration units of a publicly owned treatment works (POTWs) have been investigated by systematic monitoring and mathematical modeling. Field tests have been conducted at a 120-mgd wastewater treatment plant to investigate the hourly, weekly, and seasonal changes of VOC emissions. Variations of VOC emissions along the length of the aeration units have been tested and modeled. Most VOCs have decreasing concentration profiles. Henry's law coefficients and biodegradation constants for the detected compounds have been validated with the improved models and the field test data. More than one-half of the emissions were found to have been generated from the first one-third of the aeration unit length.  相似文献   

11.
A reduced mechanism to describe the formation of ozone from VOC oxidation has been developed, using the master chemical mechanism (MCM v2) as a reference benchmark. The ‘common representative intermediates’ (CRI) mechanism treats the degradation of methane and 120 VOC using ca. 570 reactions of ca. 250 species (i.e. the emitted VOC plus an average of about one additional species per VOC). It thus contains only ca. 5% of the number of reactions and ca. 7% of the number of chemical species in MCM v2, providing a computationally economical alternative. The CRI mechanism contains a series of generic intermediate radicals and products, which mediate the breakdown of larger VOC into smaller fragments (e.g., formaldehyde), the chemistry of which is treated explicitly. A key assumption in the mechanism construction methodology is that the potential for ozone formation from a given VOC is related to the number of reactive (i.e., C–C and C–H) bonds it contains, and it is this quantity which forms the basis of the generic intermediate groupings. Following a small degree of optimisation, the CRI mechanism is shown to generate levels of ozone, OH, peroxy radicals, NO and NO2 which are in excellent agreement with those calculated using MCM v2, in simulations using a photochemical trajectory model applied previously to simulation of episodic ozone formation. The same model is used to calculate photochemical ozone creation potentials for 63 alkanes, alkenes, carbonyls and alcohols using both mechanisms. Those determined with the CRI mechanism show a variation from compound to compound which is remarkably consistent with that calculated with the detailed chemistry in MCM v2. This suggests that the CRI mechanism construction methodology is able to capture both the salient features of the ozone formation process in general, and how this varies from one VOC to another.  相似文献   

12.
To analyse and generate air pollution control strategies and policies, e.g. efficient abatement strategies or action plans that lead to a fulfilment of air quality aims, atmospheric dispersion models (CTMs) have to be used. These models include a chemical model, where the numerous volatile organic compounds (VOCs) species are lumped together in classes. On the other hand, emission inventories usually report only total non-methane VOC (NMVOC), but not a subdivision into these classes. Thus, VOC species profiles are needed that resolve total NMVOC emission data. The objective of this publication is to present the results of a compilation of VOC species profiles that dissolve total VOC into single-species profiles for all relevant anthropogenic emission source categories and the European situation. As in atmospheric dispersion models usually modules for generating biogenic emissions are directly included, only anthropogenic emissions are addressed. VOC species profiles for 87 emission source categories have been developed. The underlying data base can be used to generate the data for all chemical mechanisms. The species profiles have been generated using recent measurements and studies on VOC species resolution and thus represent the current state of knowledge in this area. The results can be used to create input data for atmospheric dispersion models in Europe.The profiles, especially those for solvent use, still show large uncertainties. There is still an enormous need for further measurements to achieve an improved species resolution. In addition, the solvent use directive and the DECOPAINT directive of the European Commission will result in a change of the composition of paints; more water-based and high-solid paints will be used; thus the species resolution will change drastically in the next years. Of course, the species resolution for combustion and production processes also requires further improvement.  相似文献   

13.
EPA has recently evaluated several automobile retrofit devices that are potentially applicable to pre-1975 vehicles. The results of this evaluation are described and used to estimate the effectiveness and cost of retrofit for reducing total automobile emissions in the period 1975-1985. It is estimated that retrofit combined with inspection/maintenance can potentially achieve reductions in automobile emissions of 33% to 60% in 1975, depending on pollutant, and 10% to 20% in 1985. The estimated present value discounted to 1972 of the average cost per retrofit vehicle is $30 to $152 over the period 1975-1985 depending on the retrofit system used. The corresponding annualized cost is $6 to $28 per vehicle.  相似文献   

14.
A two-stage methanotrophic bioreactor system was developed for remediation of water contaminated with TCE and other chlorinated, volatile, aliphatic hydrocarbons. The first stage of the reactor was a suspended-growth culture vessel using a bubbleless methane-transfer device. The second stage was a plug-flow bioreactor supplied with contaminated groundwater and cell suspension from the culture vessel. The test objectives were to determine the applicability of microbial culture conditions reported in the literature for continuous, pilot-scale TCE treatment; the technical feasibility of plug-flow bioreactor design for treatment of TCE; and the projected economic competitiveness of the technology considering the cost of methane for growth of methanotrophs. The methanotrophic organism used in the study was Methylosinus trichosporium OB3b. Information on system operation was obtained in bench tests prior to conducting the pilot tests. In bench- and pilot-scale tests, variability in the degree of TCE degradation and difficulty in maintaining the microbial culture activity led to short periods of satisfactory biotreatment. Further development of the microbial culture system will be required for long-term operation. During transient periods of high TCE degradation activity, the bioreactor concept proved feasible by exhibiting both a high degree of TCE biodegradation (typically about 90% at influent TCE concentrations of 0.5-4 ppm) and a close approximation to first-order reactor kinetics throughout the length of the reactor. Actual methane usage in the pilot-scale reactor resulted in projected methane costs of $0.33 per 1000 gallons of water treated. This cost theoretically would be reduced by system modifications. The theoretical minimum methane cost was approximately $0.05 per 1000 gallons.  相似文献   

15.
Speciated volatile organic compound (VOC) and carbon monoxide (CO) measurements from the Marylebone Road site in central London from 1998 through 2008 are presented. Long-term trends show statistically significant decreases for all the VOCs considered, ranging from ?3% to ?26% per year. Carbon monoxide decreased by ?12% per year over the measurement period. The VOC trends observed at the kerbside site in London showed greater rates of decline relative to trends from monitoring sites in rural England (Harwell) and a remote high-altitude site (Hohenpeissenberg), which showed decreases for individual VOCs from ?2% to ?13% per year. Over the same 1998 through 2008 period VOC to CO ratios for London remained steady, an indication that emissions reduction measures affected the measured compounds equally. Relative trends comparing VOC to CO ratios between Marylebone Road and Hohenpeissenberg showed greater similarities than absolute trends, indicating that emissions reductions measures in urban areas are reflected by regional background locations. A comparison of VOC mixing ratios and VOC to CO ratios was undertaken for London and other global cities. Carbon monoxide and VOCs (alkanes greater than C5, alkenes, and aromatics) were found to be strongly correlated (>0.8) in the Annex I countries, whereas only ethene and ethyne were strongly correlated with CO in the non-Annex I countries. The correlation results indicate significant emissions from traffic-related sources in Annex I countries, and a much larger influence of other sources, such as industry and LPG-related sources in non-Annex I countries. Yearly benzene to ethyne ratios for London from 2000 to 2008 ranged from 0.17 to 0.29 and compared well with previous results from US cities and three global megacities.  相似文献   

16.
ABSTRACT

A tunable electron beam generated plasma system has been developed for selective cold plasma treatment of dilute concentrations (1-3,000 ppm range) of hazardous compounds in gaseous waste treatment. This system, referred to as the Tunable Hybrid Plasma (THP), has shown a high degree of efficiency and effectiveness in both laboratory and field tests. Decomposition energy requirements are in the 100 eV per molecule range for treatment of carbon tetrachloride and 10 eV for treatment of trichloroethylene.

A cost comparison has been made between the Tunable Hybrid Plasma (THP) technology and three conventional technologies used for emission control of volatile organic compounds (VOCs): granular activated carbon, thermal incineration, and catalytic oxidation. In addition to its environmentally attractive features, THP technology has the potential to be lower cost than other technologies over a range of concentrations and flow rates. Cost projections for the THP system for decomposition of trichloroet-hylene are around 50 cents/lb for initial concentrations in the few hundred ppm range and flow rates of 5,000 cfm or greater and around $1/lb for 1,000 cfm flow rates. Cost projections for carbon tetrachloride and trichloroethane decomposition using the THP technology are several dollars per pound. The costs for THP treatment are generally significantly lower than costs for use of granular activated carbon and are also quite competitive with costs for thermal incineration and catalytic oxidation.  相似文献   

17.
This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.  相似文献   

18.
Abstract

The effects of aeration recirculation on oxygen transfer and the fate of five volatile organic compounds (VOCs) commonly found in publicly owned treatment works (POTWs) influent are studied using various modeling approaches. The five compounds are benzene, chloroform, methylene chloride, toluene, and trichloroethylene. The models predict that the overall oxygen transfer efficiency can be increased by 96.7% at 50% aeration recirculation with only a 9.6% drop in oxygen transfer rate. The emission reductions and biodegradation improvements are compound specific; for the compounds investigated here, about 40% emission reductions and 16% biodegradation increases can be achieved at 50% aeration recirculation. The temperature effect on the VOC fate mechanisms is also investigated. Overall, the model predictions reveal that up to 50% aeration recirculation is effective in controlling VOC emissions.  相似文献   

19.
Interest in regulations to control solvent emissions from automotive painting systems is increasing, especially in ozone nonattainment areas. Therefore, an accurate measurement method for VOC emissions from paint spray booths used in the automotive industry is needed to ascertain the efficiency of the spray booth capture and the total emissions. This paper presents the results of a laboratory study evaluating potential VOC sampling and analytical methods used in estimating paint spray booth emissions, and discusses these results relative to other published data. Eight test methods were selected for evaluation. The accuracy of each sampling and analytical method was determined using test atmospheres of known concentration and composition that closely matched the actual exhaust air from paint spray booths. The solvent mixture to generate the test atmospheres contained a large proportion of polar, oxygenated hydrocarbons such as ketones and alcohols. A series of identical tests was performed for each sampling/analytical method with each test atmosphere to assess the precision of the methods. The study identified significant differences among the test methods in terms of accuracy, precision, cost, and complexity.  相似文献   

20.
ABSTRACT

The concentrations of contaminants in the supply air of mechanically ventilated buildings may be altered by pollutant emissions from and interactions with duct materials. We measured the emission rate of volatile organic compounds (VOCs) and aldehydes from materials typically found in ventilation ducts. The emission rate of VOCs per exposed surface area of materials was found to be low for some duct liners, but high for duct sealing caulk and a neo-prene gasket. For a typical duct, the contribution to VOC concentrations is predicted to be only a few percent of common indoor levels. We exposed selected materials to ~100-ppb ozone and measured VOC emissions. Exposure to ozone increased the emission rates of aldehydes from a duct liner, duct sealing caulk, and neoprene gasket. The emission of aldehydes from these materials could increase indoor air concentrations by amounts that are as much as 20% of odor thresholds. We also measured the rate of ozone uptake on duct liners and galvanized sheet metal to predict how much ozone might be removed by a typical duct in ventilation systems. For exposure to a constant ozone mol fraction of 37 ppb, a lined duct would initially remove ~9% of the ozone, but over a period of 10 days the ozone removal efficiency would diminish to less than 4%. In an unlined duct, in which only galvanized sheet metal is exposed to the air-stream, the removal efficiency would be much lower, ~0.02%. Therefore, ducts in ventilation systems are unlikely to be a major sink for ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号