首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The results from a chemical characterization study of fine particulate matter (PM2.5) measured at three elementary schools in Central and Southeast Ohio is presented here. PM2.5 aerosol samples were collected from outdoor monitors and indoor samplers at each monitoring location during the period of February 1, 1999, through August 31, 2000. The locations included a rural elementary school in Athens, OH, and two urban schools within Columbus, OH. The trace metal and ionic concentrations in the collected samples were analyzed using an X-ray fluorescence spectrophotometer and ion chromatography unit, respectively. Sulfate ion was found to be the largest component present in the samples at all three of the sites. Other abundant components included nitrate, chloride, ammonium, and sodium ions, as well as calcium, silicon, and iron. The average PM2.5 concentrations showed similar temporal variations among the three sites within the study region. PM2.5 and its major component, sulfate ion, showed strong seasonal variations with maximum concentrations observed during the summer at all three of the sites. The indoor environment was found to be more contaminated during the spring months (March through May) at New Albany (a suburb of Columbus, OH) and East Athens (rural Ohio area). Potential source contribution function analysis showed that particulate matter levels at the monitoring sites were affected by transport from adjoining urban areas and industrial complexes located along the Ohio River Valley. A preliminary outdoor source apportionment using the principal component analysis (PCA) technique was performed. The results from the PCA suggest that the study region was primarily impacted by industrial, fossil fuel combustion, and geological sources. The 2002 emissions inventory data for PM2.5 compiled by Ohio Environmental Protection Agency also showed impacts of similar source types, and this was used to validate the PCA analysis.  相似文献   

2.
The impact of various atmospheric transport directions on ambient fine particle (PM2.5) concentrations at several sites in southeastern Canada was estimated (for May-September) using back-trajectory analysis. Three-day back trajectories (four per day) were paired with 6-hr average PM2.5 mass concentrations measured using tapered element oscillating microbalances (TEOM). PM2.5 concentrations at rural locations in the region were affected by nonlocal sources originating in both Canada and the United States. Comparison of sites revealed that, on average, the local contribution to total PM2.5 in the greater Toronto area (GTA) is approximately 30-35%. At each location, average PM2.5 concentrations under south/southwesterly flow conditions were 2-4 times higher than under the corresponding northerly flow conditions. The chemical composition of both urban and rural PM2.5 was determined during two separate 2-week spring/summer measurement campaigns. Components identified included SO4(2-) NO3-, NH4+, black carbon and organic carbon (OC), and trace elements. Higher particle mass at the urban Toronto site was composed of a higher proportion of all components. However, black carbon, NO3-, NaCl, and trace elements were found to be the most enriched over the rural/regional background levels.  相似文献   

3.
The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

4.
Source contributions to fine particulate matter in an urban atmosphere   总被引:10,自引:0,他引:10  
Park SS  Kim YJ 《Chemosphere》2005,59(2):217-226
This paper proposes a practical method for estimating source attribution by using a three-step methodology. The main objective of this study is to explore the use of the three-step methodology for quantifying the source impacts of 24-h PM2.5 particles at an urban site in Seoul, Korea. 12-h PM2.5 samples were collected and analyzed for their elemental composition by ICP-AES/ICP-MS/AAS to generate the source composition profiles. In order to assess the daily average PM2.5 source impacts, 24-h PM2.5 and polycyclic aromatic hydrocarbons (PAH) ambient samples were simultaneously collected at the same site. The PM2.5 particle samples were then analyzed for trace elements. Ionic and carbonaceous species concentrations were measured by ICP-AES/ICP-MS/AAS, IC, and a selective thermal MnO2 oxidation method. The 12-h PM2.5 chemical data was used to estimate possible source signatures using the principal component analysis (PCA) and the absolute principal component scores method followed by the multiple linear regression analysis. The 24-h PM2.5 source categories were extracted with a combination of PM2.5 and some PAH chemical data using the PCA, and their quantitative source contributions were estimated by chemical mass balance (CMB) receptor model using the estimated source profiles and those in the literature. The results of PM2.5 source apportionment using the 12-h derived source composition profiles show that the CMB performance indices; chi2, R2, and percent of mass accounted for are 2.3%, 0.97%, and 100.7%, which are within the target range specified. According to the average PM2.5 source contribution estimate results, motor vehicle exhaust was the major contributor at the sampling site, contributing 26% on average of measured PM2.5 mass (41.8 microg m-3), followed by secondary sulfate (23%) and nitrate (16%), refuse incineration (15%), soil dust (13%), field burning (4%), oil combustion (2.7%), and marine aerosol (1.3%). It can be concluded that quantitative source attribution to PM2.5 in an urban area where source profiles have not been developed can be estimated using the proposed three-step methodology approach.  相似文献   

5.
Abstract

The associations between residential outdoor and ambient particle mass, fine particle absorbance, particle number (PN) concentrations, and residential and traffic determinants were investigated in four European urban areas (Helsinki, Athens, Amsterdam, and Birmingham). A total of 152 nonsmoking participants with respiratory diseases, not exposed to occupational pollution, were included in the study, which comprised a 7-day intensive exposure monitoring period of both indoor and home outdoor particle mass and number concentrations. The same pollutants were also continuously measured at ambient fixed sites centrally located to the studied areas (fixed ambient sites). Relationships between concentrations measured directly outside the homes (residential outdoor) and at the fixed ambient sites were pollutant-specific, with substantial variations among the urban areas. Differences were more pronounced for coarse particles due to resuspension of road dust and PN, which is strongly related to traffic emissions. Less significant outdoor-to-fixed variation for particle mass was observed for Amsterdam and Birmingham, predominantly due to regional secondary aerosol. On the contrary, a strong spatial variation was observed for Athens and to a lesser extent for Helsinki. This was attributed to the overwhelming and time-varied inputs from traffic and other local sources. The location of the residence and traffic volume and distance to street and traffic light were important determinants of residential outdoor particle concentrations. On average, particle mass levels in suburban areas were less than 30% of those measured for residences located in the city center. Residences located less than 10 m from a street experienced 133% higher PN concentrations than residences located further away. Overall, the findings of this multi-city study, indicated that (1) spatial variation was larger for PN than for fine particulate matter (PM) mass and varied between the cities, (2) vehicular emissions in the residential street and location in the center of the city were significant predictors of spatial variation, and (3) the impact of traffic and location in the city was much larger for PN than for fine particle mass.  相似文献   

6.
Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.  相似文献   

7.
Manoli E  Kouras A  Samara C 《Chemosphere》2004,56(9):867-878
Polycyclic aromatic hydrocarbons (PAHs) adsorbed to ambient PM(10) were determined at three sites in Thessaloniki, northern Greece, during the period June 1997-July 1998. Ambient PAH profiles exhibited significant seasonal and spatial variations. Source PAH profiles were obtained for a number of urban, industrial and geological sources including cement, fertilizer and asphalt production, quarry operations, metal electroplating, metal welding and tempering, steel manufacture, lead and bronze smelters, metal scrap incineration, oil burning, non-catalyst equipped passenger cars, diesel fueled taxies and buses, paved road dust and soil dust. Principal component analysis (PCA) and diagnostic ratios were employed to compare ambient and source PAH profiles in an attempt to recognize compositional patterns. Similarities between the ambient PAH profiles and the profiles of certain sources, such as vehicular emissions, oil burning and metal industries, were identified.  相似文献   

8.
Exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is a potential health concern for communities because many PAHs are known to be mutagenic and carcinogenic. However, information on ambient concentrations of PAHs in communities is very limited. During the Urban Community Air Toxics Monitoring Project, Paterson City, NJ, PAH concentrations in ambient air PM10 (particulate matter < or = 10 microm in aerodynamic diameter) were measured from November 2005 through December 2006 in Paterson, a mixed-use urban community located in Passaic County, NJ. Three locations dominated by industrial, commercial, and mobile sources were chosen as monitoring sites. The comparison background site was located in Chester, NJ, which is approximately 58 km west/southwest of Paterson. The concentrations of all of the individual PAHs at all three Paterson sites were found to be significantly higher than those at the background site (P < 0.05). The PAH profiles obtained from the three sites with different land-use patterns showed that the contributions of heavier PAHs (molecular weight > 202) to the total PAHs were significantly higher at the industrial site than those at the commercial and mobile sites. Analysis of the diagnostic ratios between PAH isomers suggested that the diesel-powered vehicles were the major PAH sources in the Paterson area throughout the year. The operation of industrial facilities and other combustion sources also partially contributed to PAH air pollution in Paterson. The correlation of individual PAH, total PAH, and the correlation of total PAHs with other air co-pollutants (copper, iron, manganese, lead, zinc, elemental carbon, and organic carbon) within and between the sampling sites supported the conclusions obtained from the diagnostic ratio analysis.  相似文献   

9.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

10.
In many locations in Eastern Canada, ambient levels of fine particulate matter (PM,25) and surface ozone (O3) depend on airflow direction and synoptic scale meteorological conditions. In this study, a cluster analysis was performed on 10 yr (1994-2003) of back-trajectory data for 11 locations in Eastern Canada, resulting in the identification of 10 unique back-trajectory clusters (or airflows) for each location. The airflows were then used to characterize and identify spatial and temporal trends in the daily maximum 8-hr average O3 (dmax 8-hr O3) and the daily average PM2.5 levels. Results showed that airflows from the southwest passing over Michigan and Southern Ontario were associated, on average, with the highest O3 levels at most locations in Eastern Canada. For PM2.5, the highest levels occurred with airflows from the Eastern Ohio River Valley. At major urban locations in Ontario and Quebec, the warm season mean (May to September) dmax 8-hr O3 and the annual mean PM2.5 were, on average, 12 parts per billion and 7.6 microg/m3 higher, respectively, than airflows from the north. Elevated levels of O3 and PM2.5 also occurred under light airflows, and, on average, the levels under light airflows were higher than their nonlight counterparts. At several locations in Canada, including Toronto, Montreal, Quebec City, and Kejimkujik, the annual warm season mean dmax 8-hr O3 experienced a statistically significant (95% confidence) increasing trend over the 10-yr period. When airflow direction was considered, a number of locations experienced statistically significant upward trends in O3 for airflow from the north and northwest. Several locations also showed significant upward trends associated with airflow from the southwest passing over Michigan and Southwestern Ontario. Although there are no statistically significant downward trends, airflows from the southwest have shown a reduction in O3 levels in Southwestern Ontario in more recent years.  相似文献   

11.
Atmospheric aerosols of four aerodynamic size ranges were collected using high volume cascade impactors in an extremely busy roadway tunnel in Lisbon (Portugal). Dust deposited on the tunnel walls and guardrails was also collected. Average particle mass concentrations in the tunnel atmosphere were more than 30 times higher than in the outside urban background air, revealing its origins almost exclusively from fresh vehicle emissions. Most of the aerosol mass was concentrated in submicrometer fractions (65%), and polycyclic aromatic hydrocarbons (PAH) were even more concentrated in the finer particles with an average of 84% of total PAH present in sizes smaller than 0.49 μm. The most abundant PAH were methylated phenanthrenes, fluoranthene and pyrene. About 46% of the total PAH mass was attributed to lower molecular weight compounds (two and three rings), suggesting a strong influence of diesel vehicle emissions on the production of local particulate PAH. The application of diagnostic ratios confirmed the relevance of this source of PAH in the tunnel ambient air. Deposited dust presented PAH profiles similar to the coarser aerosol size range, in agreement with the predominant origin of coarser aerosol particles from soil dust resuspension and vehicle wear products.  相似文献   

12.
In 1997, Maryland had no available ambient Federal Reference Method data on particulate matter less than 2.5 microm in aerodynamic diameter (PM23), but did have annual ambient data for PM smaller than 10 microm (PM10) at 24 sites. The PM10 data were analyzed in conjunction with local annual and seasonal zip-code-level emission inventories and with speciated PM2.5 data from four nearby monitors in the IMPROVE network (located in the national parks, wildlife refuges, and wilderness areas) in an effort to estimate annual average and seasonal high PM2.5 concentrations at the 24 PM10 monitor sites operating from 1992 to 1996. All seasonal high concentrations were estimated to be below the 24-hr PM2.5 National Ambient Air Quality Standards (NAAQS) at the sites operating in Maryland between 1992 and 1996. The estimates also indicated that 12 monitor sites might exceed the 3-year annual average PM2.5 NAAQS of 15 microg/m3, but Maryland's air quality shows signs that it has been improving since 1992. The estimates also were compared with actual measurements after the PM2.5 monitor network was installed. The estimates were adequate for describing the chemical composition of the PM2.5, forecasting compliance status with the 24-hr and annual standards, and determining the spatial variations in PM2.5 across central Maryland.  相似文献   

13.
14.
This paper analyzes day-of-week variations in concentrations of particulate matter (PM) in California. Because volatile organic compounds (VOCs) and oxides of nitrogen (NOx) are not only precursors of ozone (O3) but also of secondary PM, it is useful to know whether the variations by day of week in these precursors are also evident in PM data. Concentrations of PM < or = 10 microm (PM10) and < or = 2.5 microm in aerodynamic diameter (PM2.5) were analyzed. PM concentrations exhibit a general weekly pattern, with the maximum occurring late in the workweek and the minimum occurring on weekends (especially Sunday); however, this pattern does not prevail at all sites and areas. PM nitrate (NO3-) data from Size Selective Inlet (SSI) samplers in the South Coast Air Basin (SoCAB) tend to be somewhat lower on weekends compared with weekdays. During 1988-1991, the weekend average was lower than the weekday average at 8 of 13 locations, with an average decrease of 1%. During 1997-2000, the weekend average was lower than the weekday average at 10 of 13 locations, with an average decrease of 6%. The weekend averages are generally lower than weekday averages for sulfates, organic carbon, and elemental carbon. Because heavy-duty trucks typically represent a major source of elemental carbon, the weekend decrease in heavy-duty truck traffic may also result in a decrease in ambient elemental carbon concentrations.  相似文献   

15.
The determination of sixteen polycyclic aromatic hydrocarbons in urban street dust has been done. Samples were collected from 12 sampling locations in a city centre location (Newcastle upon Tyne, north east England) and extracted using in situ pressurised fluid extraction followed by gas chromatography mass spectrometry. From the results it was possible to identify three groups, with respect to PAH concentration, with PAH contents ranging between 0.6-2.3 mg kg−1, 15.6-22.5 mg kg−1 and 36.1-46.0 mg kg−1. The total PAH content of samples from these sampling sites has been compared to 22 urban locations around the world; comparable levels were found in these samples compared to the other cities around the world.The potential source of PAHs has been investigated by investigating the proportion of pyrogenic and petrogenic material in urban street dust using specific individual PAH ratios. The results indicate that the PAH content of urban street dust from the chosen sites are more likely to be due to pyrogenic sources i.e. vehicle exhaust emissions. The particle size fractions (<63 μm; 63-125 μm; 125-250 μm; 250-500 μm; 500-1000 μm; and 1000-2000 μm) of individual PAHs in three selected sampling sites was investigated. In two of the selected sites the PAH content was independent of particle size whereas in sampling site 10 elevated PAH levels are noted in the <63 μm size fraction. Sampling site 10 is located at the junction of three road tributaries which are used as major access points to the east of the city centre. Finally, the potential health risk for unintentional consumption of PAHs was assessed in terms of a mean daily intake (based on an ingestion rate of 100 mg d−1). It was found that all 4-6 membered ring PAHs had concentrations in excess of the mean daily intake thereby reflecting a potential health risk, particularly in the smallest size particle fractions.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA as a “Criteria Pollutant”, it is monitored regularly at sites nationwide. In contrast, very limited data is available on measured ambient air concentrations of PAHs. However, between 1999 and 2001, ambient air concentrations of PM2.5 and benzo(a)pyrene (BaP) are available for California locations. We use multivariate linear regression models (MLRMs) to predict ambient air levels of BaP in four air basins based on reported PM2.5 concentrations and spatial, temporal and meteorological variables as variates. We obtain an R2 ranging from 0.57 to 0.72 among these basins. Significant variables (p<0.05) include the average daily PM2.5 concentration, wind speed, temperature and relative humidity, and the coastal distance as well as season, and holiday or weekend. Combining the data from all sites and using only these variables to estimate ambient BaP levels, we obtain an R2 of 0.55. These R2-values, combined with analysis of the residual error and cross validation using the PRESS-statistic, demonstrate the potential of our method to estimate reported outdoor air PAH exposure levels in metropolitan regions. These MLRMs provide a first step towards relating outdoor ambient PM2.5 and PAH concentrations for epidemiological studies when PAH measurements are unavailable, or limited in spatial coverage, based on publicly available meteorological and PM2.5 data.  相似文献   

17.
The US. Department of Energy Gasoline/Diesel PM Split Study was conducted to assess the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the relative contributions of emissions from gasoline (or spark ignition [SI]) and diesel (or compression ignition [CI]) engines to ambient concentrations of fine particulate matter (PM2.5) in California's South Coast Air Basin (SOCAB). In this study, several groups worked cooperatively on source and ambient sample collection and quality assurance aspects of the study but worked independently to perform chemical analysis and source apportionment. Ambient sampling included daily 24-hr PM2.5 samples at two air quality-monitoring stations, several regional urban locations, and along freeway routes and surface streets with varying proportions of automobile and truck traffic. Diesel exhaust was the dominant source of total carbon (TC) and elemental carbon (EC) at the Azusa and downtown Los Angeles, CA, monitoring sites, but samples from the central part of the air basin showed nearly equal apportionments of CI and SI. CI apportionments to TC were mainly dependent on EC, which was sensitive to the analytical method used. Weekday contributions of CI exhaust were higher for Interagency Monitoring of Protected Visual Environments (IMPROVE; 41+/-3.7%) than Speciation Trends Network (32+/-2.4%). EC had little effect on SI apportionment. SI apportionments were most sensitive to higher molecular weight polycyclic aromatic hydrocarbons (indeno[123-cd]pyrene, benzo(ghi)perylene, and coronene) and several steranes and hopanes, which were associated mainly with high emitters. Apportionments were also sensitive to choice of source profiles. CI contributions varied from 30% to 60% of TC when using individual source profiles rather than the composites used in the final apportionments. The apportionment of SI vehicles varied from 1% to 12% of TC depending on the specific profile that was used. Up to 70% of organic carbon (OC) in the ambient samples collected at the two fixed monitoring sites could not be apportioned to directly emitted PM emissions.  相似文献   

18.
The elemental compositions of the water-soluble and acid-digestible fractions of 24-hr integrated fine particulate matter (PM(2.5)) samples collected in Steubenville, OH, from 2000 to 2002 were determined using dynamic reaction cell inductively coupled plasma-mass spectrometry. The water-soluble elemental compositions of PM(2.5) samples collected at four satellite monitoring sites in the surrounding region were also determined. Fe was the most abundant but least water soluble of the elements determined at the Steubenville site, having a mean ambient concentration of 272 ng/m3 and a median fractional solubility of 6%. Fe solubility and its correlations with SO4(2-) and temperature varied significantly by season, consistent with the hypothesis that secondary sulfates may help to mobilize soluble Fe under suitable summertime photochemical conditions. Significantly higher ambient concentrations were observed at Steubenville than at each of the four satellite sites for 10 of the 18 elements (Al, As, Ca, Cd, Fe, Mg, Mn, Na, Pb, and Zn) determined in the water-soluble PM(2.5) fraction. Concentrations of Fe, Mn, and Zn at Steubenville were substantially higher than concentrations reported recently for larger U.S. cities. Receptor modeling identified seven sources affecting the Steubenville site. An (NH4)2SO4-dominated source, likely representing secondary PM(2.5) from coal-fired plants to the west and southwest of Steubenville, accounted for 42% of the PM(2.5) mass, and two sources likely dominated by emissions from motor vehicles and from iron and steel facilities in the immediate Steubenville vicinity accounted for 20% and 10%, respectively. Other sources included an NH4NO3 source (15%), a crustal source (6%), a mixed nonferrous metals and industrial source (3%), and a primary coal combustion source (3%). Results suggest the importance of very different regional and local source mechanisms in contributing to PM(2.5) mass at Steubenville and reinforce the need for further research to elucidate whether metals such as Fe, Mn, and Zn play a role in the PM(2.5) health effects observed previously there.  相似文献   

19.
Concentrations and distributions of three major water-soluble ion species (sulfate, nitrate, and ammonium) contained in ambient particles were measured at three sampling sites in the Kao-ping ambient air quality basin, Taiwan. Ambient particulate matter (PM) samples were collected in a Micro-orifice Uniform Deposit Impactor from February to July 2003 and were analyzed for water-soluble ion species with an ion chromatograph. The PM1/ PM2.5 and PM1/PM10 concentration ratios at the emission source site were 0.73 and 0.53 and were higher than those (0.68 and 0.48) at the background site because there are more combustion sources (i.e., industrial boilers and traffic) around the emission source site. Mass-size distributions of PM NO3- were found in both the fine and coarse modes. SO4(2-)and NH4+ were found in the fine particle mode (PM2.5), with significant fractions of submicron particles (PM1). The source site had higher PM1/PM10(79, 42, and 90%) and PM1/PM2.5 concentration ratios (90, 58, and 93%) for the three major inorganic secondary aerosol components (SO4(2-), NO3-, and NH4+) than the receptor site (65, 27, and 65% for PM1/PM10, 69, 51, and 70% for PM1/PM2.5. Results obtained in this study indicate that the PM1 (submicron aerosol particles) fraction plays an important role in the ambient atmosphere at both emission source and receptor sites. Further studies regarding the origin and formation of ambient secondary aerosols are planned.  相似文献   

20.
Evaporative loss of particulate matter (with aerodynamic diameter < 2.5 microm, [PM2.5]) ammonium nitrate from quartz-fiber filters during aerosol sampling was evaluated from December 3, 1999, through February 3, 2001, at two urban (Fresno and Bakersfield) and three nonurban (Bethel Island, Sierra Nevada Foothills, and Angiola) sites in central California. Compared with total particulate nitrate, evaporative nitrate losses ranged from < 10% during cold months to > 80% during warm months. In agreement with theory, evaporative loss from quartz-fiber filters in nitric acid denuded samplers is controlled by the ambient nitric acid-to-particulate nitrate ratio, which is determined mainly by ambient temperature. Accurate estimation of nitrate volatilization requires a detailed thermodynamic model and comprehensive chemical measurements. For the 14-month average of PM2.5 acquired on Teflon-membrane filters, measured PM2.5 mass was 8-16% lower than actual PM2.5 mass owing to nitrate volatilization. For 24-hr samples, measured PM2.5 was as much as 32-44% lower than actual PM2.5 at three California Central Valley locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号