首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparing materials for simultaneous remediation of anionic and cationic heavy metals contamination has always been the focus of research. Herein a biochar supported FeMnMg layered double hydroxide (LDH) composites (LB) for simultaneous remediation of copper and arsenic contamination in water and soil has been assembled by a facile co-precipitation approach. Both adsorption isotherm and kinetics studies of heavy metals removal by LB were applied to look into the adsorption performance of adsorbents in water. Moreover, the adsorption mechanisms of Cu and As by LB were investigated, showing that Cu in aqueous solution was removed by the isomorphic substitution, precipitation and electrostatic adsorption while As was removed by complexation. In addition, the availability of Cu and As in the soil incubation experiments was reduced by 35.54%–63.00% and 8.39%–29.04%, respectively by using LB. Meanwhile, the addition of LB increased the activities of urease and sucrase by 93.78%–374.35% and 84.35%–520.04%, respectively, of which 1% of the dosage was the best. A phenomenon was found that the richness and structure of microbial community became vigorous within 1% dosage of LB, which indirectly enhanced the passivation and stabilization of heavy metals. These results indicated that the soil environment was significantly improved by LB. This research demonstrates that LB would be an imaginably forceful material for the remediation of anionic and cationic heavy metals in contaminated water and soil.  相似文献   

2.
The combined pollution of heavy metals is ubiquitous worldwide. Mn/Al-layered double oxide-loaded crab shells biochar (LDO/BC) was prepared, so as to remediate the combined pollution of Cd and Cu in soil and water. The pristine and used LDO/BC were characterized and the results revealed that the layered double oxide was successfully loaded on crab shells biochar (BC) and metal element Ca in crab shells was beneficial to the formation of more regular layered and flake structure. The maximal adsorption capacity (Qm) of LDO/BC for aqueous Cu2+ and Cd2+ was 66.23 and 73.47 mg/g, respectively. LDO/BC and BC were used to remediate e-waste-contaminated soil for the first time and exhibited highly efficient performance. The extraction amount of Cu and Cd in the contaminated soil by diethylene triamine penta-acetic acid (DTPA) after treating with 5% LDO/BC was significantly reduced from 819.84 to 205.95 mg/kg (with passivation rate 74.8%) and 8.46 to 4.16 mg/kg (with passivation rate 50.8%), respectively, inferring that the bioavailability of heavy metals declined remarkably. The experimental result also suggested that after remediation by LDO/BC the exchangeable and weak acid soluble Cu and Cd in soil translated to reducible, residual and oxidizable fraction which are more stable state. Precipitation, complexation and ion exchange were proposed as the possible mechanisms for Cd and Cu removal. In general, these experiment results indicate that LDO/BC can be a potentially effective reagent for remediation of heavy metal contaminated water and soil.  相似文献   

3.
生物炭颗粒在多孔介质中的迁移行为不仅决定了其在环境中的归趋,也极大地影响了被吸附污染物的环境行为.以往的研究主要集中在生物炭胶体在均性多孔介质中的迁移行为,但实际环境介质通常是非均性的,目前对生物炭胶体在非均性多孔介质中的迁移行为知之甚少.本研究采用两种不同粒径的石英砂构建了上下两层非均性填充柱(上层细颗粒,下层粗颗粒),研究了生物炭胶体在非均性多孔介质中的迁移和截留行为,考察了溶液离子强度和pH对生物炭胶体迁移能力的影响.研究结果表明在非均性多孔介质中,生物炭胶体具有很高的迁移能力,在离子强度为1~50 mmol·L-1,pH为4.0~11.0条件下,生物炭胶体的迁移率达40.2%~88.0%.非均性介质中生物炭胶体的截留曲线表现为非单调型曲线,截留量峰值往往出现在细-粗石英砂的交界面处(细石英砂侧),这与非均性介质中显著的电荷异质性、介质尺寸异质性和迁移过程中传质通量异质性有关.生物炭胶体在上层细石英砂中的截留量显著大于其在下层粗石英砂中的截留量,表明上层细石英砂是影响生物炭胶体迁移行为的关键层.随着溶液离子强度增加,生物炭胶体自团聚作用增强,其与石英砂介质间界面作用能垒降低,因而生物炭胶体的迁移能力减弱.由于生物炭胶体与细石英砂间的物理张力作用趋于显著,增加离子强度提高了生物炭胶体在上层细石英砂中的截留比率.中性和碱性条件下生物炭胶体的迁移能力较强,而在酸性条件下,生物炭胶体表面电负性显著降低,团聚体粒径增大,生物炭胶体的迁移能力较弱.降低溶液pH增加了生物炭胶体在上层细石英砂中的截留比率.本研究的结果将有利于人们更好地了解生物炭胶体在复杂多孔介质中的迁移行为,为全面评估生物炭的潜在环境风险提供理论支持.  相似文献   

4.
Transforming to biochar provides an environmentally friendly approach for crop residue reutilization, which are usually applied as sorbent for heavy metal removal. As typical siliconrich material, the specific sorptive mechanisms of rice straw derived biochar(RSBC) are concerned, especially at the low concentration range which is more environmentally relevant. In the present study, Cd sorption onto RSBCs at the concentration of ≤ 5 mg/L was investigated. The sorptive capacity was positively corr...  相似文献   

5.
This study evaluated the release characteristics of mercury from bituminous coal in chemical looping combustion (CLC) using Australian iron ore as the oxygen carrier in a fixed bed reactor. The effects of several parameters, such as temperature in the fuel reactor (FR) and air reactor (AR), gasification medium in the FR, and reaction atmosphere in the AR, on mercury release characteristics, were investigated. The mercury speciation and release amount in the FR and AR under different conditions were further explored. The results indicate that most of the mercury in coal was released in the FR, while the rest of it was released in the AR. Hg0 was found to be the major species in the released mercury. The results also indicate that a higher temperature in the FR led to an increase in the total mercury release amount and a decrease in Hg0 proportion. However, a higher temperature in the AR resulted in a decrease in the total mercury release amount and Hg0 proportion. The increase in the H2O/CO2 ratio of gasification mediums in the FR was beneficial for the increase in the total mercury release amount and Hg0 proportion. A higher O2 concentration in reaction atmosphere in AR had a negligible effect on the total mercury release amount, but a positive effect on Hg0 oxidization.  相似文献   

6.
Heavy metal pollution affects soil ecological function. Biochar and compost can effectively remediate heavy metals and increase soil nutrients. The effects and mechanisms of biochar and compost amendments on soil nitrogen cycle function in heavy-metal contaminated soils are not fully understood. This study examined how biochar, compost, and their integrated use affected ammonia-oxidizing microorganisms in heavy metal polluted soil. Quantitative PCR was used to determine the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB). Ammonia monooxygenase (AMO) activity was evaluated by the enzyme-linked immunosorbent assay. Results showed that compost rather than biochar improved nitrogen conversion in soil. Biochar, compost, or their integrated application significantly reduced the effective Zn and Cd speciation. Adding compost obviously increased As and Cu effective speciation, bacterial 16S rRNA abundance, and AMO activity. AOB, stimulated by compost addition, was significantly more abundant than AOA throughout remediation. Correlation analysis showed that AOB abundance positively correlated with NO3?-N (r = 0.830, P < 0.01), and that AMO activity had significant correlation with EC (r = -0.908, P < 0.01) and water-soluble carbon (r = -0.868, P < 0.01). Those seem to be the most vital factors affecting AOB community and their function in heavy metal-polluted soil remediated by biochar and compost.  相似文献   

7.
Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(Ⅲ) and Pb(Ⅱ).The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction.The mechanism of As(Ⅲ) removal could be illustrated by surface complexation,oxidation and precipitation.In addition to precipitation and com...  相似文献   

8.
Risk associated with heavy metals in soil has been received widespread attention.In this study,a porous biochar supported nanoscale zero-valent iron(BC-nZVI) was applied to immobilize cadmium(Cd) and lead(Pb) in clayey soil.Experiment results indicated that the immobilization of Cd or Pb by BC-nZVI process was better than that of BC or nZVI process,and about 80% of heavy metals immobilization was obtained in BC-nZVI process.Addition of BC-nZVI could increase soil pH and organic matter(SOM).Cd or...  相似文献   

9.
Removing large concentrations of organic pollutants from water efficiently and quickly under visible light is essential to developing photocatalytic technology and improving solar energy efficiency. This study used a simple hydrothermal method to prepare a non-metallic, S-doped NaTaO3 (S-NTO) photocatalyst, which was then loaded onto biochar (BC) to form a S-NTO/BC composite photocatalyst. After uniform loading onto BC, the S-NTO particles transformed from cubic to spherical. The photogenerated electron-hole pair recombination probability of the composite photocatalyst was significantly lower than those of the NTO particles. The light absorption range of the catalyst was effectively widened from 310 nm UV region to visible region. In addition, a dual-effect catalytic system was constructed by introducing peroxymonosulfate (PMS) into the environment of the pollution to be degraded. The Rhodamine B, Methyl Orange, Acid Orange 7, tetracycline, and ciprofloxacin degradation efficiency at 40 mg/L reached 99.6%, 99.2%, 84.5%, 67.1%, and 70.7%, respectively, after irradiation by a 40 W lamps for 90 min. The high-efficiency visible-light catalytic activity of the dual-effect catalytic system was attributed to doping with non-metallic sulfur and loading of catalysts onto BC. The development of this dual-effect catalytic system provides new ideas for quickly and efficiently solving the problem of high-concentration organic pollution in aqueous environments, rationally and fully utilizing solar energy, and expanding the application of photocatalytic technology to practice.  相似文献   

10.
In this study, the biochar (BC) produced from sawdust, sludge, reed and walnut were used to support sulfidation of nano-zero-valent-iron (S-nZVI) to enhance nitrate (NO3-N) removal and investigate the impact on greenhouse gas emissions. Batch experiment results showed the S-nZVI/BCsawdust (2:1, 500), S-nZVI/BCsludge (2:1, 900), S-nZVI/BCreed (2:1, 700), and S-nZVI/BC walnut (2:1, 700) respectively improved NO3-N removal efficiencies by 22%, 20%, 3% and 0.1%, and the selectivity toward N2 by 22%, 25%, 22% and 18%. S-nZVI uniformly loaded on BC provided electrons for the conversion of NO3-N to N2 through Fe0. At the same time, FeSx layer was formed on the outer layer of ZVI in the sulfidation process to prevent iron oxidation, so as to improve the electrons utilization efficiency After adding four kinds of S-nZVI/BC into constructed wetlands (CWs), the NO3-N removal efficiencies could reach 100% and the N2O emission fluxes were reduced by 24.17%-36.63%. And the average removal efficiencies of TN, COD, TP were increased by 21.9%, -16.5%, 44.3%, repectively. The increasing relative abundances of denitrifying bacteria, such as Comamonas and Simplicispira, suggested that S-nZVI/BC could also improve the process of microbial denitrification. In addition, different S-nZVI/BC had different effects on denitrification functional genes (narG, nirk, nirS and nosZ genes), methanotrophs (pmoA) and methanogenesis (mcrA). This research provided an effective method to improve NO3-N removal and reduce N2O emission in CWs.  相似文献   

11.
Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment.  相似文献   

12.
Herein,we developed the invasive plant-derived biochar (IPB) functionalized with CaAl-LDH at five mass ratios using a physical mixture method,assessed their adsorption perform for Eu(Ⅲ),and explored the relative mechanisms.Results show that the IPB successfully loaded CaAl-LDH in five composites and their Eu(Ⅲ) sorption affinities were strongly affected by solution p H,contact time,temperature,and the mass ratio of LDH and IPB.All the sorpiton process for Eu(Ⅲ) occurred on the heterogeneous surf...  相似文献   

13.
The residual effect of tobacco biochar(TB ≥ 500°C) mono and co-application with Cahydroxide(CH),Ca-bentonite(CB) and natural zeolite(NZ) on the bio-availability of trace elements TE(s) in alkaline soils has not been deeply studied yet.A pot study that had earlier been investigated TB mono and blended with CH,CB and NZ on the immobilization of Pb,Cu Cd,and Zn by Chinese cabbage.Maize crop in the rotation was selected as test plant to assess the residual impact of amendments on stabilization of Pb...  相似文献   

14.
周庄水体内源磷负荷释放规律及其稳定性研究   总被引:2,自引:0,他引:2  
李晖  周琪  安淼 《上海环境科学》2003,22(12):943-947
以周庄河道内源磷负荷为对象,通过实验室模拟,研究了上覆水pH值,溶解氧及环境温度对内源磷释放的影响。结果表明,pH值5.0-9.5,上覆水中的磷浓度随pH值的升高而增加;在不同溶解氧释放条件下,缺氧促进内源磷的释放,好氧抑制磷释放,其抑制能力和pH值相关。pH值7.0~9.5,好氧的抑制效果明显:在好氧的条件下。高的溶解氧会增加磷的释放;温度和上覆水中总磷平衡浓度的对数呈正线性关系。采用Golterman分类提取方法,对不同释放条件下各形态内源磷的稳定性进行了考察。  相似文献   

15.
In order to enhance the removal performance of graphitic carbon nitride (g-C3N4) on organic pollutant, a simultaneous process of adsorption and photocatalysis was achieved via the compounding of biochar and g-C3N4. In this study, g-C3N4 was obtained by a condensation reaction of melamine at 550°C. Then the g-C3N4/biochar composites were synthesized by ball milling biochar and g-C3N4 together, which was considered as a simple, economical, and green strategy. The characterization of resulting g-C3N4/biochar suggested that biochar and g-C3N4 achieved effective linkage. The adsorption and photocatalytic performance of the composites were evaluated with enrofloxacin (EFA) as a model pollutant. The result showed that all the g-C3N4/biochar composites displayed higher adsorption and photocatalytic performance to EFA than that of pure g-C3N4. The 50% g-C3N4/biochar performed best and removed 45.2% and 81.1% of EFA (10 mg/L) under darkness and light with a dosage of 1 mg/mL, while g-C3N4 were 19.0% and 27.3%, respectively. Besides, 50% g-C3N4/biochar showed the highest total organic carbon (TOC) removal efficiency (65.9%). Radical trapping experiments suggested that superoxide radical (?O2?) and hole (h+) were the main active species in the photocatalytic process. After 4 cycles, the composite still exhibited activity for catalytic removal of EFA.  相似文献   

16.
Excessive livestock grazing degrades grasslands ecosystem stability and sustainability by reducing soil organic matter and plant productivity. However, the effects of grazing on soil cellulolytic fungi, an important indicator of the degradation process for soil organic matter, remain less well understood. Using T-RFLP and sequencing methods, we investigated the effects of grazing on the temporal changes of cellulolytic fungal abundance and community structure in dry steppe soils during the growing months from May to September, on the Tibetan Plateau using T-RFLP and sequencing methods. The results demonstrated that the abundance of soil cellulolytic fungi under grazing treatment changed significantly from month to month, and was positively correlated with dissolved organic carbon (DOC) and soil temperature, but negatively correlated with soil pH. Contrastingly, cellulolytic fungal abundance did not change within the fencing treatment (ungrazed conditions). Cellulolytic fungal community structure changed significantly in the growing months in grazed soils, but did not change in fenced soils. Grazing played a key role in determining the community structure of soil cellulolytic fungi by explaining 8.1% of the variation, while pH and DOC explained 4.1% and 4.0%, respectively. Phylogenetically, the cellulolytic fungi were primarily affiliated with Ascomycota (69.65% in relative abundance) and Basidiomycota (30.35%). Therefore, grazing substantially reduced the stability of soil cellulolytic fungal abundance and community structure, as compared with the fencing treatment. Our finding provides a new insight into the responses of organic matter-decomposing microbes for grassland managements.  相似文献   

17.
Biochar has been used increasingly as a soil additive to control mercury (Hg) pollution in paddy rice fields. As the most active component of soil organic matter, soil dissolved organic matter (DOM) plays a vital role in the environmental fate of contaminants. However, there are very few studies to determine the impact of biochar on the Hg cycle in rice paddies using insights from DOM. This study used original and modified biochar to investigate their effect on DOM dynamics and their potential impact on methylmercury (MeHg) production and bioaccumulation in rice plants. Porewater DOM was collected to analyze the variations in soil-derived DOM in paddy soils. The results showed that the addition of biochar, whether in original or modified form, significantly reduced the bioaccumulation of MeHg in rice plants, especially in hulls and grains (p<0.05). However, MeHg production in soils was only inhibited by the modified biochar. Biochar addition induced a significant increase in DOM's aromaticity and molecular weight (p<0.05), which decreased Hg bioavailability. Furthermore, enhanced microbial activity was also observed in DOM (p<0.05), further increasing MeHg production in the soil. Thus, the effect of biochar on the fate of Hg cycle involves competition between the two different roles of DOM. This study identified a specific mechanism by which biochar affects Hg behavior in rice paddy soil and contributes to understanding the more general influence of biochar in agriculture and contaminant remediation.  相似文献   

18.
As one typical cationic disinfectant, quaternary ammonium compounds (QACs) were approved for surface disinfection in the coronavirus disease 2019 pandemic and then unintentionally or intentionally released into the surrounding environment. Concerningly, it is still unclear how the soil microbial community succession happens and the nitrogen (N) cycling processes alter when exposed to QACs. In this study, one common QAC (benzalkonium chloride (BAC) was selected as the target contaminant, and its effects on the temporal changes in soil microbial community structure and nitrogen transformation processes were determined by qPCR and 16S rRNA sequencing-based methods. The results showed that the aerobic microbial degradation of BAC in the two different soils followed first-order kinetics with a half-life (4.92 vs. 17.33 days) highly dependent on the properties of the soil. BAC activated the abundance of N fixation gene (nifH) and nitrification genes (AOA and AOB) in the soil and inhibited that of denitrification gene (narG). BAC exposure resulted in the decrease of the alpha diversity of soil microbial community and the enrichment of Crenarchaeota and Proteobacteria. This study demonstrates that BAC degradation is accompanied by changes in soil microbial community structure and N transformation capacity.  相似文献   

19.
Polymyxin B (PMB) is considered as the last line of antibiotic defense available to humans. The environmental effects of the combined pollution with PMB and heavy metals and their interaction mechanisms are unclear. We explored the effects of the combined pollution with PMB and arsenic (As) on the microbial composition of the soil and in the earthworm gut, as well as the spread and transmission of antibiotic resistance genes (ARGs). The results showed that, compared with As alone, the combined addition of PMB and As could significantly increase the bioaccumulation factor and toxicity of As in earthworm tissues by 12.1% and 16.0%, respectively. PMB treatment could significantly increase the abundance of Actinobacteria in the earthworm gut (from 35.6% to 45.2%), and As stress could significantly increase the abundance of Proteobacteria (from 19.8% to 56.9%). PMB and As stress both could significantly increase the abundance of ARGs and mobile genetic elements (MGEs), which were positively correlated, indicating that ARGs might be horizontally transferred. The inactivation of antibiotics was the main resistance mechanism that microbes use to resist PMB and As stress. Network analysis showed that PMB and As might have antagonistic effects through competition with multi-drug resistant ARGs. The combined pollution by PMB and As significantly promoted the relative abundance of microbes carrying multi-drug resistant ARGs and MGEs, thereby increasing the risk of transmission of ARGs. This research advances the understanding of the interaction mechanism between antibiotics and heavy metals and provides new theoretical guidance for the environmental risk assessment and combined pollution management.  相似文献   

20.
Considerable research efforts have been devoted to increase phosphorus(P) availability during aerobic composting.However,there is little discussion weather the dissolved organic carbon(DOC) controls the transformation among P-fractions.Thus,we investigated the changes in DOC compositions and P-fractions during biochar-amended composting(wet weight basis,5% and 10%).TP content continuously increased since the ’concentration effect’ during aerobic composting.NaHCO3-Pi,NaOH-Pi and HCl-Pi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号