首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The zoeal larvae of brachyuran crabs must feed soon after hatching on a diet that includes large micro- and mesozooplankton in order to satisfy nutritional requirements. However, newly hatched larvae have been shown to ingest a variety of dinoflagellates, perhaps using microbial carbon sources to sustain them until they encounter more favored prey. Ingestion of dinoflagellates by larval crabs has been documented previously under conditions in which the larvae were exposed to algae provided in monoculture or in defined mixtures of cells. We report here on experiments conducted on the hatching stage of five crab species to determine if ingestion of dinoflagellates occurred when they were provided in combination with Artemia sp. nauplii or after a period of feeding on mesozooplankton. Quantitative measurements of chl a in the larval guts provided evidence of ingestion of algal cells. Active ingestion of the dinoflagellate Prorocentrum micans at specified intervals during an extended feeding period was determined on larvae of two crab species using fluorescently labeled cells provided for brief periods at prescribed time intervals. Stage 1 larvae of four of the five crab species ingested dinoflagellates when they were provided in combination with nauplii and larvae of all five species ingested cells after feeding solely on nauplii for 24 h. Ingestion of algal cells was first evident in the larval guts after 6 h of feeding at both low (200 cell ml−1) and high (1,000 cells ml−1) prey densities. Higher prey densities resulted in higher gut chl a. Larvae continuously exposed to dinoflagellates actively ingested cells at every 3 h interval tested over a 36 h period. Results confirm previous studies that larvae will ingest dinoflagellates even when they are encountered in a mixed prey field or when having previously fed. Ingestion of cells may occur on a continual basis over time.  相似文献   

2.
J. M. Last 《Marine Biology》1978,45(4):359-368
An examination was made of the stomach contents of the larvae of the plaice Pleuronectes platessa Linnaeus, 1758; the flounder Platichthys flesus (Linnaeus, 1758), the dab Limanda limanda (Linnaeus, 1758), and the sole Solea solea (Linnaeus, 1758) collected in the eastern English Channel and in the Southern Bight during the winter and spring of 1971. These 4 species of flat fish have distinct diets, and competition for food between them is largely avoided. Plaice larvae fed almost exclusively on Oikopleura dioica; flounder larvae also ate O. dioica, but in addition a wide range of planktonic organisms including phytoplankton, polychaete larvae, lamellibranch larvae, and copepod nauplii. Dab larvae fed mainly on the nauplii and copepodite stages of a variety of copepods, but particularly of Temora longicornis. Some T. longicornis copepodites and polychaete larvae were eaten by sole larvae, but the principal prey of these was lamellibranch larvae. The larvae of all the species began to feed in the yolk-sac stage; the initial food of all except plaice consisted of dino-flagellates, followed by tintinnids and copepod nauplii. Feeding began at dawn and the number of feeding fish and the number of food organisms in their stomachs increased throughout the day to a maximum near sunset. There were no consistent differences between the two areas in the diets of any of the species.  相似文献   

3.
Feeding by larvae of the sea bream Archosargus rhomboidalis (Linnaeus) was investigated from late September, 1972 to early May, 1973 using laboratory-reared larvae. Fertilized eggs were collected from plankton tows in Biscayne Bay, and the larvae were reared on zooplankton also collected in plankton nets. Techniques were developed to estimate feeding rate, food selection, gross growth efficiency, and daily ration. Daily estimates of these were obtained through 16 days after hatching at rearing temperatures of 23°, 26°, and 29°C. Feeding rate increased exponentially as the larvae grew, and increased as temperature was raised. At 23°C larvae began feeding on Day 3, at 26° and 29°C larvae began feeding on Day 2. Feeding rates at initiation of feeding and on Day 16 were, respectively: 23°C, 7.16 food organisms per larva per hour (flh) and 53.78 flh; 26°C, 7.90 flh and 168.80 flh; 29°C, 17.62 flh and 142.07 flh. Sea bream larvae selected food organisms by size. At initiation of feeding they selected organisms less than 100 m in width. As larvae grew they selected larger organisms and rejected smaller ones. The major food (more than85% of the organisms ingested) was copepod nauplii, copepodites, and copepod adults. Minor food items were barnacle nauplii, tintinnids, invertebrate eggs, and polychaete larvae. Mean values for gross growth efficiency of sea bream larvae ranged from 30.6% at 23°C to 23.9% at 29°C. Mean values for daily ration, expressed as a percentage of larval weight, ranged from 84% at 23°C to 151% at 29°C and tended to decline as the larvae grew.This paper is a contribution from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA  相似文献   

4.
Food selection by laboratory-reared larvae of scaled sardines Harengula pensacolae, and bay anchovies Anchoa mitchilli, was compared. Natural plankton was fed to the larvae during the 22 days following hatching. Food levels in the rearing tanks were maintained at an average of 1,600 to 1,800 potential food organisms per liter. Larvae of both species selected as food copepod nauplii, copepodites, and copepods; initial feeding was on organisms of 50 to 75 body width. Larvae of H. pensacolae averaged 4.2 mm in total length at hatching and those of A. mitchilli about 2.0 mm. H. pensacolae larvae grew about 1.0 mm per day and A. mitchilli 0.70 mm per day. The mean number of food organisms in each digestive tract was greater in H. pensacolae than in A. mitchilli, and the difference in number increased as the larvae grew. Average size of food organisms eaten increased for both species with growth, because of selection by the larvae; the average size of copepodites and copepods in digestive tracts increased at a faste rate in H. pensacolae than A. mitchilli. A. mitchilli longer than 8 mm did not eat copepod nauplii.Contribution No. 170, Bureau of Commercial Fisheries Tropical Atlantic Biological laboratory, Miami, Florida 33149, USA.  相似文献   

5.
The food and feeding habits of 3 species of gadoid larvae — the cod Gadus morhua Linnaeus, 1758, the whiting Merlangius merlangus (Linnaeus, 1758), and the bib Trisopterus luscus (Linnaeus, 1758), collected in the eastern English Channel and Southern Bight during the spring of 1971 are described. All 3 species began to feed in the yolk-sac stage on diatoms, dinoflagellates and tintinnids, but the principal food was the nauplii and copepodites of calanoid copepods, particularly of Pseudocalanus minutes, but also of Paracalanus parvus, Temora longicornis and Acartia clausii. Pseudocalanus minutus and Paracalanus parvus were eaten mainly early in the season and T. longicornis later when it became more abundant. The larvae discriminated for prey size as growth proceeded. They sometimes took the largest prey available to them, but in general the size of the prey was considerably less than the maximum size which could have been swallowed. Feeding larvae were found at all times of the day, but the incidence of feeding was lowest before dawn. Feeding increased at sunrise, declined until late in the morning, and then increased again to a maximum around sunset. There was evidence of feeding by moonlight, particularly by whiting and bib larvae. There was little difference between the English Channel and Southern Bight in regard to the food eaten.  相似文献   

6.
Food limitation is likely to be a source of mortality for fish larvae in the first few weeks after hatching. In the laboratory, we analyzed all aspects of foraging in cod larvae (Gadus morhua Linnaeus) from 5 to 20 d post-hatching using protozoa (Balanion sp.) and copepod nauplii (Pseudodiaptomus sp.) as prey. A camera acquisition system with two orthogonal cameras and a digital image analysis program was used to observe patterns of foraging. Digitization provided three-dimensional speeds, distances, and angles for each foraging event, and determined prey and fish larval head and tail positions. Larval cod swimming speeds, perception distances, angles, and volumes increased with larval fish size. Larval cod swam in a series of short intense bursts interspersed with slower gliding sequences. In 94% of all foraging events prey items were perceived during glides. Larval cod foraging has three possible outcomes: unsuccessful attacks, aborted attacks, and successful attacks. The percentage of successful attacks increased with fish size. In all larval fish size classes, successful attacks had smaller attack distances and faster attack speeds than unsuccessful attacks. Among prey items slowly swimming protozoans were the preferred food of first-feeding cod larvae; larger larvae had higher swimming speeds and captured larger, faster copepod nauplii. Protozoans may be an important prey item for first-feeding larvae providing essential resources for growth to a size at which copepod nauplii are captured. Received: 20 April 1999 / Accepted: 12 January 2000  相似文献   

7.
Pelagic eggs of the scaled sardine Harengula pensacolae (Goode and Bean), have been hatched and reared in the laboratory for the first time. Larvae were reared in two 75 l aquaria under constant illumination, at an average temperature of 26.2°C. Zooplankton collected in a 35 mesh net was fed to the newly hatched larvae, and the diet was supplemented later with Artemia salina nauplii and a pelleted food. Larvae hatched at 4 mm TL (total length), and metamorphosed about 25 days later at 25 to 30 mm TL. Survivors averaged 76 mm TL 100 days after hatching. Of the 500 incubated eggs, 2.8% survived until 20 days, after which no significant natural mortality occurred. Sources of natural mortality included starvation, a copepod parasite (Caligus sp.), and injuries from contact with the sides of the tank. Larvae began feeding at 4.5 mm TL on copepod nauplii averaging 62 in body width. Scaled sardines were photopositive throughout the larval stage.Contribution No. 149, Bureau of Commercial Fisheries Tropical Atlantic Biological Laboratory, Miami, Florida 33149, USA.  相似文献   

8.
M. Omori 《Marine Biology》1971,9(3):228-234
Sergestes lucens Hansen, a mesopelagic shrimp fished commercially in Suruga Bay, Japan, was successfully reared from egg to post-larval stage V under laboratory conditions. Chaetoceros ceratosporum and Artemia nauplii were found to be satisfactory food in the laboratory during rearing. Growth, mortality, food preference, and feeding and swimming activities during the various developmental stages were investigated. Temperature changes greatly affected the speed of development and the mortality of the larvae. The optimum temperature range for larval development was 18° to 25°C. The growth rate (length) of larval stages was as rapid as 0.16mm/ day at 20 °C and 0.21 mm/day at 23 °C. The larvae first started feeding on phytoplankton at elaphocaris stage I, and then gradually became predators in the post-larval stages. It is suggested that the critical period for the species occurs in the elaphocaris stages. Environmental data, vertical distribution of the species, and data obtained from laboratory experiments suggest that the fluctuation in the abundance of S. lucens is greatly influenced by the water temperature at around 50 m from June to August. Feeding mechanisms observed in the post-larval stages are described.  相似文献   

9.
P. Munk 《Marine Biology》1995,122(2):205-212
Fish larvae meet diverse environmental conditions at sea, and larval growth and chance of survival depend on a flexible response to environmental variability. The present study focuses on the flexibility of the foraging behaviour of larval cod in a series of laboratory experiments on larval search activity, prey selectivity, and hunger in a variable prey environment. Gadus morhua eggs were collected in March 1992 and 1993 from the Kattegat area, Denmark, fertilised and incubated in the laboratory. After hatching, the larvae were transferred to rearing tanks of 172 litres. The behaviour of larvae (6 to 7 mm long) was observed visually, and prey attacks, swimming activity and gut contents were registered across a range of 1 to 120 copepod nauplii l-1. When prey density decreased, larvae increased their swimming activity, increased their responsiveness to prey (distance of reaction) and decreased their prey size selectivity. Behavioural response was to a large degree determined by the level of hunger, represented by the number of newly ingested prey in the gut. The findings show that cod larvae have a flexible response to changes in feeding conditions and imply that larvae can grow and survive even in the lower range of (mean) prey densities measured at sea.  相似文献   

10.
E. D. Houde 《Marine Biology》1977,43(4):333-341
Bay anchovy (Anchoa mitchilli) eggs were stocked at densities from 0.5 to 32.0 l-1 and larvae were fed on wild plankton (copepod nauplii) in concentrations that ranged from 50 to 5000 prey l-1. Lined sole (Achirus lineatus) eggs were stocked at 0.5 to 16.0 l-1 and larvae were fed wild plankton at concentrations from 50 to 1000 prey l-1. Some larvae of each species survived at all stock and food levels to the transformation stage at 16 days after hatching. Survival rates for both species exceeded 40% when food concentration was 1000 l-1 or higher. Growth and dry weight yields also increased significantly at the higher food concentrations. Effects of initial stocking density were not well defined, but both survival and growth decreased at the highest stocking rates. Standardized culture of bay anchovy and lined sole larvae can be based on a food concentration of 1000 copepod nauplii l-1 to routinely produce healthy larvae.  相似文献   

11.
Response of mesocosm-reared cod (Gadus morhua L.) larvae to different feeding conditions was investigated in 1988 in two mesocosms: a large basin and a smaller bag enclosure within the basin. The basin was filled with seawater, and a community of naturally occurring plankton developed. Plankton concentrations were monitored, and cod larvae stocked in the enclosures were sampled for determination of growth, survival, and gut content. In the bag, insufficient amounts of energetically favourable prey, as copepod nauplii, led to non-selective ingestion of plankton from a broad range of sizes, including considerable amounts of protozoans (tintinnid and oligotrich ciliates). Growth of larvae from the bag was low, with daily specific growth rates (SGR) less than 2.8% the first 3 wk post-hatch. This was followd by rapid increase of SGR to 21.7%, which coincided with a large increase in availability of copepod nauplii. In the basin, high nauplii concentrations led to SGR of 13.7 to 21.7% from onset of feeding to 16 d post-hatch, respectively. Under such conditions, the larvae were highly selective feeders. At 3 wk post-hatch, survival was 36.7 and 38.3% in the basin and bag enclosure, respectively. To cope with variations in the feeding conditions, the cod larvae were shown to be opportunists when nauplii were scarce, and included plankton from several trophic levels in their diet. When nauplii were abundant, cod larvae realized their high potential for growth. Both opportunism and realization of a high growth potential may enhance survival of the larvae.  相似文献   

12.
Prey selection shortly after the onset of feeding by laboratory-reared gilthead seabream, Sparus aurata L., larvae was studied using larvae fed on two types of microcapsule (hard- and soft-walled) having diameters ranging from 25 to 300 m. Preferences between inert food and live prey (rotifers and Artemia sp. nauplii) were also studied. Seabream larvae were able to ingest inert food from first feeding. Larvae of all size classes ingested hard microcapsules with diameters in the range 25 to 250 m. However, larvae with a total length (TL) below 4 mm preferentially selected particles 25 to 50 m in diameter, larvae of TL 4 and 5 mm preferred particles 51 to 100 m in diameter, while larvae above 5 mm TL preferred particles 101 to 150 m in diameter. With soft microcapsules, larvae always preferred particles larger than in the previous case, and above 4.5 mm TL they preferentially selected particles 201 to 250 m in diameter. In addition, the gradual increase of preferred diameters with increasing TL was more pronounced when larvae were increasing TL was more pronounced when larvae were fed on soft particles. Mean values for prey width/mouth width ratios were approximately 0.24 and 0.30 when larvae were fed on hard-walled and soft-walled microcapsules, respectively, irrespective of the absolute value of larval length. When a mixed diet of live and inert food items was offered, live prey were always preferentially selected, even if the prey width/mouth width ratio was apparently not favourable. Only a physical constraint such as excessive prey width could counter this preference for living prey vs inert microcapsules. These results contribute to our knowledge in larval feeding behaviour, especially in the presence of inert food, and represent a fundamental step in developing prepared food for marine fish larvae.  相似文献   

13.
A simple system of shadow cinematography, consisting of a small tungsten halogen lamp, 2 large biconvex lenses and a 16 mm camera, is described for recording the swimming and feeding behaviour of larval fish. The system can be used either with infra-red film to record swimming behaviour independently of ambient light intensity, or with high-resolution film to record food organisms and feeding behaviour. Small plankton organisms of 0.2 mm width can be resolved using high-resolution film. The technique has been used to record the behaviour of plaice larvae (Pleuronectes platessa L.) feeding on the nauplii of Artemia salina L. The perceptive field of the larvae extends to approximately ±60° in azimuth, ±40° in elevation and 1.5 body lengths in range.  相似文献   

14.
We examined feeding by larval weakfish, Cynoscion regalis (Bloch and Schneider), in laboratory experiments conducted during the 1991 spawning season. under natural conditions weakfish larval development is ca. 3 wk, and we ran separate experiments with larvae of five different ages (5, 8, 11, 14, and 17 d post-hatching). We used two different size classes of rotifers (Brachionus plicatilis) and brine shrimp nauplii (Artemia sp.) as prey organisms. Contrary to results of previous research, weakfish larvae did not select prey based on size alone. When prey abundance was above 100 itemsl-1 weakfish, larvae always chose large rotifers (length = 216 m) over small rotifers (length = 160 m). At 11 d post-hatching, larvae switched their diet from large rotifers to small brine shrimp nauplii (length = 449 m); however, when fed small rotifers and small brine shrimp nauplii the change in diet occurred at 14 d post-hatching. This pattern of selectivity was maintained in each larval age class. Early-stage larvae (5 and 8 d post-hatching) did not feed selectively when prey abundance was less than 100 itemsl-1. Late-stage larvae (17 d post-hatching) fed selectively at abundances ranging from 10 to 10000 items-1. Lwimming speeds of prey items, which ranged from 1 to 6 mms-1, had no consistent effect on prey selection. These results suggest that weakfish larvae are able to feed selectively, that selectivity changes as larvae age, and that selectivity is also influenced by prey abundance.  相似文献   

15.
R. S. Batty 《Marine Biology》1987,94(3):323-327
Larvae of Clupea harengus were reared from spawning herring caught in March 1982 and 1983 in the Firth of Clyde, Scotland. An infra0red observation technique was used to record the behaviour of larval herring both in shallow dishes using a top view and in a tank 2 m deep using a side view. The amount of time larvae spent swimming, which was minimum in complete darkness, increased with increasing light intensity and as the larvae grew. Maximum swimming speeds of feeding larvae were recorded at light intensities between 10 and 100 lux. The presence of food organisms (Artemia sp., Brazilian strain) at light intensities below the feeding threshold (0.1 lux) caused an increase in the proportion of time spent active, but light intensities above the threshold had different effects, depending on developmental stage: larvae of 12 mm increased swimming speed, but 21 mm larvae decreased speed. In the 2 m deep tank in darkness, larvae displayed inactive periods wherein they sank head first, interspersed with periods of upward swimming. As light intensity increased, vertical swimming was replaced by horizontal swimming. These results are discussed with reference to food searching and vertical migration of larval herring in the sea.  相似文献   

16.
Moerisia lyonsi Boulenger (Hydrozoa) medusae and benthic polyps were found at 0 to 5‰ salinity in the Choptank River subestuary of Chesapeake Bay, USA. This species was introduced to the bay at least 30 years before 1996. Medusae and polyps of M. lyonsi are very small and inconspicuous, and may occur widely, but unnoticed, in oligohaline waters of the Chesapeake Bay system and in other estuaries. Medusae consumed copepod nauplii and adults, but not barnacle nauplii, polychaete and ctenophore larvae or tintinnids, in laboratory experiments. Predation rates on copepods by medusae increased with increasing medusa diameter and prey densities. Feeding rates on copepod nauplii were higher than on adults and showed no saturation over the range of prey densities tested (1 to 64 prey l−1). By contrast, predation on copepod adults was maximum (1 copepod medusa−1 h−1) at 32 and 64 copepods l−1. Unexpectedly, M. lyonsi colonized mesocosms at the Horn Point Laboratory during the spring and summer in 4 years (1994 to 1997), and reached extremely high densities (up to 13.6 medusae l−1). Densities of copepod adults and nauplii were low when medusa densities were high, and estimated predation effects suggested that M. lyonsi predation limited copepod populations in the mesocosms. Polyps of M. lyonsi asexually produced both polyp buds and medusae. Rates of asexual reproduction increased with increasing prey availability, from an average total during a 38 d experiment of 9.5 buds polyp−1 when each polyp was fed 1 copepod d−1, to an average total of 146.7 buds polyp−1 when fed 8 copepods d−1. The maximum daily production measured was 8 polyp buds and 22 medusae polyp−1. The colonizing potential of this hydrozoan is great, given the high rates of asexual reproduction, fairly wide salinity tolerance, and existence of a cyst stage. Received: 29 October 1998 / Accepted: 3 March 1999  相似文献   

17.
Spinocalanus antarcticus, an abundant mesopelagic copepod in polar seas, has a greatly elongated and looped midgut, contrary to most other copepod species. The total gut length is 1.77, 1.86 and 1.90 times the total body length in adult females, CV and CIV, respectively. Gross morphology of the midgut is similar in all copepodite stages and adults. It is described here from specimens collected in the Arctic Ocean. In stratified samples from the deep Amundsen and Makarov Basins S. antarcticus showed a clear preference for the depth layer between 100 and 500 m. Generally, the guts were packed with material, but most of it was impossible to identify. In most specimens the digestive tract was filled with undefined detritus particles ("detritus balls"). They were almost spherical, heterogeneous organic aggregates of 40-100 µm diameter, with small clay-sized mineral flakes imbedded. Mineral particles in the size range of 1-10 µm were found in large quantities in the guts of many specimens. Cysts of Chrysophycea and dinoflagellates and fragments of dinoflagellates, diatoms, tintinnids and radiolarians, as well as skeletons of silicoflagellates, were rather rare; some animal remnants were also found. A high carbon/nitrogen ratio (8.9) and very high lipid content (54% of dry weight) indicated a very good nutritional state. The adaptive significance and possible feeding strategy of this deep-water copepod is discussed.  相似文献   

18.
The effects of two paralytic shellfish toxin (PST) producing dinoflagellates, Alexandrium minutum Halim (high and low toxin strains) and Gymnodinium catenatum Graham, on the pelagic harpacticoid copepod Euterpina acutifrons Dana were tested in a series of experiments run from October 1994 to May 1995. In small volumes (350 ml), both strains of A. minutum (300 to 350 cells ml-1), and G. catenatum (175 cells ml-1), strongly reduced naupliar activity (about 30 and 17% were inactive after 24 h, respectively). Activity is here defined as movement. In medium volumes (6 litre), 40% of nauplii incubated with the high toxin strain of A. minutum (1000 cells ml-1) and 8% of nauplii incubated with cell-free filtrate of the same culture were inactive after 24 h; these values increased to 50 and 30% respectively after 3 d. In large volumes (20 litre), adult copepods incubated with A. minutum (1000 and 10000 cells ml-1) for 5 d revealed only trace levels of PSP-toxins (paralytic shellfish poisoning) in the extracts analysed by HPLC. With both strains of A. minutum (1000 and 10000 cells ml-1), 10 to 15% of the copepods were inactive after 1 to 2 d. It is suggested that E. acutifrons avoids feeding on the dinoflagellates after tasting a few cells, but that the dinoflagellates may exude toxins or other substances that affect the copepods. The inactivating effect of the toxic dinoflagellates on the nauplii was more rapid and stronger than on adult copepods, although strong inactivation and death were also observed in adults with time (up to 80% were inactive after 5 d of incubation with A. minutum). Still, in our experiments a considerable proportion of adult females incubated with the toxic dinoflagellates remained active and were able to produce viable eggs for several days.  相似文献   

19.
Most studies on feeding by herring larvae (Clupea harengus) have taken place in clear, open waters, but several herring stocks around the world spawn in inshore and estuarine regions. An example is the spring-spawning Blackwater Estuary (Essex, England) stock. Samples were collected in this estuary to examine prey selectivity and feeding levels in relation to biological and environmental conditions. Herring larvae negatively selected copepod nauplii, but positively selected the copepodite and adult stages of Acartia spp. Gastropod larvae were also positively selected. Particles >150 μm width were preferred, whilst particles smaller than this value were preferentially rejected. Concentrations of potential prey items in the water were in the range of 6.0 to 49.7 organisms l−1 with a median concentration of 15.0 organisms l−1 (n = 26). These values are towards the low end of prey concentrations quoted in the literature as being required to sustain herring larval growth and survival. However, theoretical considerations suggest that, in this environment, levels of tidally-induced turbulence enhance encounter rates between larval herring and their prey. On the other hand, turbidity is also related to tidal current speed and might reduce feeding success by decreasing underwater light levels. Measurements at two sites in the estuary confirmed that tidally-induced turbidity reduced the effective water depth in which herring larvae could visually feed by up to 50% at times of peak current speed. However, with the gut-content data available in the present study, it was not possible to discern any clear relationships between feeding success and the state of the tide. Feeding success appeared to be more strongly influenced by surface light-levels. Received: 24 June 1998 / Accepted: 17 February 1999  相似文献   

20.
Recruitment of capelin in the Barents Sea fail when juvenile herring and cod are abundant and the potential for feeding competition of wild sympatric capelin and herring larvae and small cod juveniles were investigated. The frequency of gut evacuation after capture of capelin larvae were also studied in mesocosms. Small capelin larvae (<35 mm length) fed on small prey including phytoplankton, invertebrate eggs and nauplii, bivalves, other invertebrate larvae and small copepods. Calanus copepodites were only observed in large capelin larvae (>26 mm length). Calanus copepodites were the major food sources for contemporary herring larvae (25–35 mm length) and Calanus and euphausiids were the major prey for small juvenile herring (37–60 mm length) and cod (18–40 mm length). Capelin larvae reared in mesocosms evacuated the guts shortly after capture. Capelin larvae had a smaller mouth and fed on smaller prey than herring and cod of the same length. This implies that the small capelin larvae, in contrast to sympatric small herring and cod, are not tightly linked to the food chain involving Calanus and euphausiids. Thus, exploitative competition between capelin larvae and planktivorous fish that rely on Calanus and euphausiids in the Barents Sea may be relaxed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号