首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
随着广州市城市化进程的不断加快,城市建筑垃圾的排出量也在快速增长,如何应对和处理建筑垃圾所带来的"垃圾围城"困境,已经成为人们不得不面对的重要问题,推进建筑垃圾资源化是开展建筑垃圾综合治理的有效途径。论述了建筑垃圾资源化再生利用的必要性、紧迫性,指出了广州市建筑垃圾资源化过程中存在的问题,为推进广州市建筑垃圾综合处理实践提供了参考。  相似文献   

2.
随着城市建筑垃圾产量暴增,大量建筑垃圾露天堆存严重阻碍城市的发展,怎样妥善处理日益增长的建筑垃圾已成为城市管理者需要应对的问题。本文因我国目前突出的"垃圾围城"问题而引发思考,明确了建筑垃圾定义及产生来源,通过对上海市建筑垃圾组分分析,认为建筑垃圾的出路在于资源化;同时通过与国外建筑垃圾资源化处理的已有经验比较,结合我国国内具体情况指出了我国建筑垃圾资源化过程中的问题,认为只有发挥政策的引导、技术的研发、资金的支持和规划的配合的共同作用,才能解决建筑垃圾出路问题。  相似文献   

3.
随着建设项目的增多,建筑垃圾也日益增多。本文对建筑垃圾资源化利用进行了初步分析,重点通过对建筑垃圾的分类研究,提出我国建筑垃圾资源化存在问题及建议。  相似文献   

4.
我国建筑垃圾资源化对策探讨   总被引:2,自引:0,他引:2  
分析了我国城市建筑垃圾传统处理方式及其危害,估算了我国近10a的建筑垃圾年产量,提出建筑垃圾资源化的路径。  相似文献   

5.
贺娟  钟伟  张永辉  陈寿同  吉旭 《环境工程》2018,36(10):102-107
中国的建筑垃圾以3%的速率逐年增加,大量建筑垃圾成为建筑业快速发展的阻碍之一。相较于填埋等传统方法,建筑垃圾资源化是处理建筑垃圾的较好途径。运用物质流分析法定量分析了中国建筑垃圾现状,发现中国建筑垃圾产量大,资源化利用率仅5%。同时,运用全过程管理理论分析建筑垃圾资源化薄弱环节,发现中国消纳场入场费远低于循环处理入场费,导致大量垃圾流入消纳场,循环企业垃圾原料供应不足。此外,还存在处理工艺简单、再生产品质量波动大、效益惨淡等问题,并基于此提出了中国建筑垃圾资源化率的提升建议路径。  相似文献   

6.
道路拆除的建筑垃圾中包含大量的钢筋以及混凝土、砖瓦物料,采用"分拣-破碎-筛分-制砖-烘干"模式进行建筑垃圾再生利用,制作空心砖、泡沫混凝土材料,道路拆除的建筑垃圾再生骨料可以取代砂子,用于砌筑砂浆、抹灰砂浆。通过对道路拆除中建筑垃圾的再生利用,有效减少了垃圾对环境的污染,避免了建筑垃圾对土壤和环境的破坏,同时还具有客观的经济效益,研究建筑垃圾再生利用实施模式,从处理技术和利用模式上进行革新,提高建筑垃圾的使用范围,促进环境了环境与经济效益的协同增长。  相似文献   

7.
我国建筑垃圾再生资源化分析   总被引:3,自引:0,他引:3  
首先根据我国目前能源和环境两大难题,说明建筑垃圾再生资源化的重要性和迫切性.进而分析了建筑垃圾特性和分类,对国内外建筑垃圾的资源化再生利用现状进行了研究,对建筑垃圾再生资源化提出新的建议.  相似文献   

8.
建筑垃圾循环利用现状及基本途径   总被引:1,自引:0,他引:1  
本文阐明了建筑垃圾的意义;分析了目前建筑垃圾利用的现状和我国存在的问题;提出了建筑垃圾循环利用的方法及其基本实现途径.这有利于建筑垃圾的资源化利用和实现经济及环境的可持续发展.  相似文献   

9.
我国城市建筑垃圾的处理现状与建议   总被引:3,自引:0,他引:3  
杨艺  高迪  张博 《环境保护》2013,41(11):42-43
随着我国城市化步伐的加快,城市中建筑垃圾的数量与日俱增,给社会环境造成严重危害。在城市建筑垃圾处理中,需要结合可持续发展的战略思想,提高城市建筑垃圾利用率,降低其污染程度,实现资源化处理。建筑垃圾在城市垃圾中占有相当大的比重,严重威胁人们的健康和生活环境。建筑垃圾的构成比较复杂,虽然建筑垃圾的产生方式不同,但是究其根本,我国建筑垃圾的基本组成  相似文献   

10.
随着城市化进程的加快以及房地产行业的崛起,促使建筑(装修)垃圾的产生量逐年上升,建筑行业也被列为碳排放重点行业之一,因此建筑(装修)垃圾资源化利用是早日实现碳减排的重要途径。本文分析了建筑(装修)垃圾的组分,介绍了苏州市建筑(装修)垃圾的分类处置现状,以苏州市建筑(装修)垃圾资源化处理为例,采用全生命周期方法核算建筑(装修)垃圾处理过程各阶段的碳排放情况,并提出苏州市进一步实施建筑(装修)垃圾减碳的建议。通过核算分析发现,每资源化处理1t的建筑(装修)垃圾,减碳量可达94.81 kg,具有良好的碳减排效应。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

17.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

20.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号