首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
The analysis of heavy metals is very important for assessing the feasibility of the agricultural utilization for the municipal sludge. In this paper, a four-step sequential extraction method was applied to extract heavy metals (Cu, Zn, Mn, Cr, and Ni) in municipal sludges from seven individual wastewater treatment plants located in Jilin and Heilongjiang Province, China, for estimating the mobility and bioavailability of the metal ions in the agricultural application. The total concentrations of heavy metals and their chemical fractions after the sequential extraction were determined. Principal component analysis (PCA) was applied to analyze the relations of heavy metals fractions in the municipal sludges. Experimental results indicated that the total concentrations of Cu, Zn, Cr, and Ni in all sludge samples were below the threshold values set out by the Chinese legislation (GB18918-2002). Specially, Zn had a high bioavailability and mobility, Cu and Cr had potential bioavailability, while Mn mainly existed in the residual fraction of municipal sludge. On the other hand, Ni had different mobility in different municipal sludge. PCA results were confirmed by the environmental behavior of heavy metals.  相似文献   

2.
Metal Pollution Assessment of Sediment and Water in the River Hindon, India   总被引:7,自引:0,他引:7  
The metal pollution in water and sediment of the River Hindon in western Uttar Pradesh (India) was assessed for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The metal concentrations in water showed wide temporal variation compared with bed sediment because of variability in water discharge and variations in suspended solid loadings. Metal concentrations in bed sediments provided a better evaluation of the degree and the extent of contamination in the aquatic environment, Santagarh and Atali being the most polluted sites of the river. The ratio of heavy metals to conservative elements (Fe, Al, etc.) may reveal the geochemical imbalances due to the elevated metal concentrations normally attributed to anthropogenic sources. Metal/Al ratios for the bed sediments of the river Hindon were used to determine the relative mobility and general trend of relative mobility occurred Fe > Mn > Zn > Cr > Ni > Pb > Cu > Cd.  相似文献   

3.
Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had significant negative correlations with total Cu, Pb, Cr, Zn, Cd, and heavy metal fractions. This showed that alkaline phosphatase activity was sensitive to heavy metals in heavily contaminated regions, whereas urease and invertase were less affected. The combination of the various methods may offer a powerful analytical technique in the study of heavy metal pollution in street soil.  相似文献   

4.
The concentrations and chemical partitioning of heavy metals (Co, Cr, Ni, Zn, Cu, and Pb) in the marine near-shore sediment cores were investigated. Typically, the mean concentrations from Core B sediment samples were 98.6, 21.1, 47.0, 46.4, 107.6, and 31.9 mg kg???1 for Cr, Co, Ni, Cu, Zn, and Pb, respectively. The heavy metal concentrations were normalized to commonly used reference elements Al, Li, Sc, and total organic carbon. Based on Pearson coefficients, Li was found to be a good normalizer for Co (r?= 0.974), Cr (r?= 0.967), Ni (r?= 0.898), and Zn (r?= 0.929) in 80 sediment samples from three sampling sites. However, the correlation coefficients between Li and Cu, and Li and Pb were relatively low. Multivariate statistic approaches (Principal Component Analysis and Cluster Analysis) were adopted for data treatment, allowing the identification of two main factors controlling the heavy metal variability in the sediments. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. The results showed that the residual, Fe/Mn oxides and Organic/sulfide fractions were dominant geochemical phases in the enriched sections, indicating low bioavailability of heavy metals in sediments.  相似文献   

5.
Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be related to their solubility and chemical forms, and that they decrease with each successive extraction step, then the apparent mobility and bioavailability of these five heavy metals in ASM increase in the order of Cu < As < Ni < Fe < Zn. The SEM/AVS ratio was less than one in eight replicate ASM samples, indicating that the ASM was non-toxic with regards to having a low probability of bioavailable metals in the pore water.  相似文献   

6.
Concentrations of selected heavy metals (Fe, Mn, Ni, Cu, Zn, Pb, Hg, Cr, Al, and As) in surface sediments from 18 stations in the Candarli Gulf were studied in order to understand current metal contamination due to urbanization and economic development in Candarli region, Turkey. The sediment samples were collected by box corer in Candarli Gulf in 2009 to assess heavy metal pollution. Heavy metal concentrations in surface sediment varied from 1.62% to 3.60% for Fe, 0.38?C2.53% for Al, 173?C1,423 for Mn, 8?C100 for Ni, 3?C46 for Cu, 55?C119 for Zn, 16?C138 for Pb, 0.2?C6.3 for Hg, 16?C71 for Cr, and 11?C37 mg kg???1 for As. This study showed that the concentrations of Mn, Ni, Zn, Pb, Hg, and Cr in the surface sediment layers were elevated when compared with the subsurface layers. Both metal enrichment and contamination factors show that Hg, Zn, and Pb contamination exists in the entire study area and contamination of other metals is also present in some locations depending on the sources.  相似文献   

7.
This work describes the results of assessment of the heavy metals, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in urban soil of Guwahati City, India from 31 sites of five different land use types covering residential, commercial, industrial, public utilities, and roadside. Sequential extraction procedure was used to evaluate the relative distribution of the eight metals in exchangeable, carbonate, reducible (Fe?CMn oxide), organic and sulfide, and residual fractions. Of the eight metals, Cd and Co occur in lower concentrations (Cd <?< Co) in all types of land, and concentration variation from one type of land use to another is not much significant for both the metals. Ni presence is more than Co, and the concentrations show some variation depending on land use status. Average Cr and Cu concentrations are ??100?mg/kg, but Cr has a significantly higher presence in industrial land use. The results are similar in case of Pb. The two metals, Mn and Zn have domination over the other metals, and the values are ??300?mg/kg. Industrial and roadside soil contains much more Mn, while commercial soil is most enriched with Zn. Of the metals, Ni has the largest proportion (~42%) bound to the exchangeable fraction and Co, Cr, and Pb also have appreciable proportion bound to the same fraction. A significant amount of Co is associated with carbonates. The reducible fraction has bound considerable quantity of Mn and Zn, while most of Cu is associated with the organic and sulfide fraction. Both Cd and Pb are dominantly associated with the residual fraction. Computation of the mobility factor of the metals indicates Mn to be the most mobile metal present in the soil samples.  相似文献   

8.
The geochemistry of coastal sediments of southern India was altered after the tsunami in 2004. A five-step sequential extraction procedure was applied to assess the effects of tsunami on mobility and redistribution of selected elements (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn). Ten surface sediments and three cores were analyzed for different metal fractions (exchangeable, carbonate, reduced, oxidized, and residual). Total metal concentrations increased in mangrove sediments after the tsunami, but their spatial distribution did not show significant variation (except Mn). The sediments were mixed by the tsunami, and there was lack of variation in metal concentrations in different fractions with depth (except Pb and Mn). High concentrations of Pb and Zn occurred in the oxide fractions, whereas Cu, Cr, Cd, and Ni were high in the organic and sulfide-rich fractions. Metals in the residual fraction (lattice bound) had the highest concentration suggesting their non-availability and limited biological uptake in the system. Most of the metals (except Mn) do not constitute a risk based on the different geochemical indices.  相似文献   

9.
Solid waste samples were collected from five small-scale industrial sites in the National Capital Territory (NCT) of Delhi. These industrial sites represent the regional spread of the industrial belt in the NCT of Delhi. Solid waste samples were digested using aqua-regia and HF in air tight teflon bombs for the quantitative analysis of heavy metals (Hg, Pb, Cd, Mn, Fe, Ni, Cu and Zn) by GBC model 902 atomic absorption spectrophotometer. Hg was analysed using hydrid generator attachment. Beside this sequential extraction was used to fractionate five heavy metals (Pb, Ni, Cd, Cu and Zn) into six operationally defined phases, viz. water soluble, exchangeable, carbonate-bound, Fe-Mn oxides, organic-bound and residual fractions to ascertain the relative mobility of these metals. The result obtained showed metal concentration to be in the range of Hg 0.42-2.3; Pb 23-530; Cd 014-224; Mn 494-19 964; Fe 35 684-233 119; Ni 192-1534; Cu 3065-10 144 and Zn 116-23 321 (all units in mg kg(-1)) in all the industrial areas studied. The fractionated toxic metals like Pb, Ni and Cd were observed to be in the range of 25-35, 15-50 and 40-50%, respectively, in mobile or bio-available fractions of solid waste. As this waste is often disposed-off by the roadsides, low lying areas, abandoned quarries or in landfill sites which are often not properly planned, thus posing potential risk to ground and surface water quality to millions of people living downstream.  相似文献   

10.
Concentration of Cd, Co, Cr, Ni, Zn, Fe, Mn, Pb and Cu were determinedin biota and sediment samples collected from the Marmara Sea in Turkey. The levels of Zn, Fe, Mn, Pb and Cu in the macroalgae are higher than previous studies in the Marmara Sea. Moreover, Cu and Zn concentrations at the present study are significantly high than Bosphorus and Black Sea algae. The order heavy metal concentrations in the mussel samples was: Fe > Zn > Ni > Mn > Cu > Pb > Cr > Cd > Co. The metal concentrations are generally lower when compared with the Black Sea mussels except Pb. At the same time, concentrations of Pb, Cu and Zn in the mussel species are lower when compared with the results in the Aegean Sea. The ranges of Mn and Cu in the tested fish samples are higher than Black Sea fish. On the other hand, Cd, Co, Cr, Zn and Pb concentrations are lower. The northern coast of the Marmara Sea having the highest metal concentrations in sediments as follows: Co, Cr, Ni, Fe at ?arköy ; Pb, Cu at M. Ere?li; Cd, Zn, Mn at Menek?e. The heavy metal levels in the sediment samples are lower than other areas in the Marmara Sea.  相似文献   

11.
The chemical speciation of nine heavy metals in intertidal sediments from Quanzhou Bay was determined using a modified sequential extraction procedure, proposed by the Commission of the European Community Bureau of Reference. The results show that Mn presents the highest percentage in the acid-soluble fraction, and Pb and Cu present the highest percentages in the reducible fraction. The highest percentages of Fe, V, Cr, Ni, Zn, and Co were found in the residual fraction. The mobility order of the heavy metals studied on the basis of the nonresidual content of the elements is Mn > Pb > Cu > Co > Zn > Ni > Cr > V > Fe. The assessment on potential ecological risk indices of some heavy metals indicates that Zn, Ni, and Cr show moderate contamination, while Cu and Pb show slighter contamination. On the whole, the comprehensive potential ecological risk index of Cu, Zn, Ni, Cr, and Pb in the sediments presents moderate degree.  相似文献   

12.
Surface sediment samples (n = 18) were collected from the Algerian Mediterranean coasts and analyzed for seven metals using inductively coupled plasma-optical emission spectrometry in order to asses the distribution and bioavailability of metals and to study the anthropogenic factors affecting their concentrations. Sediment samples were size-fractionated into three sizes: 1,080–500 (coarse), 500–250 (medium), and <250 mm (fine). Bulk sediments were subjected to both sequential extraction and total digestion to evaluate the reliability of the sequential extraction procedure (SEP), while the fractions have been only sequentially extracted for metals speciation. The metals were sequentially extracted into five phases namely exchangeable (P1), carbonates (P2), Fe–Mn oxides (P3), organic (P4) and residual (P5). Metal recoveries in sequential extractions were ±20% of the independently measured total metal concentrations; the high recovery rates indicate the good reliability of the SEP used in this study. Correlation coefficients indicated that the grain size has an effect on the distribution of metals in the investigated samples. The order of metal levels in the fractions was medium > fine > coarse for all the metals. The average total extractable metal concentrations for Cd, Cr, Cu, Fe, Ni, Pb, and Zn were 1.1, 8.8, 4.7, 1,291.3, 13.9, 5.7 and 20.4 μg/g, respectively. The northeastern shelf had the lowest metal levels while the highest were in northwestern part mainly due to the significant tourism activities in the northwestern part. Comparison of our results to Earth’s crust values and to previous studies points out that our samples were relatively unpolluted with respect to the heavy metals investigated; most of the metals are not from anthropogenic sources. Enrichment factors as the criteria for examining the impact of the anthropogenic sources of heavy metals were calculated, and it was observed that the investigated samples were not contaminated with Cr, Cu, and Fe, moderately contaminated with Ni, Pb, and Cd, and contaminated with Cd in some sites. The P5 phase had the highest percents of Cr, Cu, Fe, Ni, and Zn. Cadmium and lead were predominant in the P4 phase, while Cu, Fe and Zn were distributed in the order P5 > P3 > P4 > P2 > P1. The following order of bioavailability was found with the heavy metals Pb > Cr > Cd > Ni > Zn > Cu > Fe.  相似文献   

13.
Concentration of some heavy metals (Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn) were determined in muscle, liver, kidney and gill of two barb, Barbus xanthopterus and Barbus rajanorum mystaceus, which have great economic values, in the Atatürk Dam Lake (Turkey). Heavy metal levels in fish samples were analyzed by inductively coupled plasma spectroscopy (ICP/OES). Heavy metal concentrations vary significantly, depending on the type of the tissue in fish species. The metal accumulation in the liver, kidney and gill of Barbus xanthopterus and Barbus rajanorum mystaceus was found to be quite high in comparison with that in the muscle. The mean concentrations of heavy metals in muscle tissues of Barbus xanthopterus were as follows: Co, 0.09; Cr, 0.12; Cu, 0.27; Fe, 5.26; Mn, 0.20; Ni, 0.08; Pb, 0.68; Zn, 1.39, whereas in muscle tissues of Barbus rajanorum mystaceus were as follows: Co, 0.11; Cr, 0.10; Cu, 1.07; Fe, 3.97; Mn, 019; Ni, 0.04; Pb, 0.66; Zn, 1.70 microg/g wet weight. Cd levels in gill and muscle tissues were below detection limits. All metal levels detected in tissues were safe for human consumption and within the limits for fish proposed by FAO/ WHO, EU and Turkish Food Codes.  相似文献   

14.
太原市大气颗粒物中重金属的污染特征及来源解析   总被引:6,自引:2,他引:4  
为了解太原市采暖期大气颗粒物不同粒径中重金属的污染特征及其来源,于2012年10月—2013年2月对环境空气中颗粒物采样,用原子吸收分光光度法测定样品中Fe、Pb、Cu、Ni、Cr、Cd、Mn、Zn等8种元素的含量。结果表明,太原市采暖期重金属浓度从高到低依次为FePbMnZnCrCuNiCd。重金属Pb、Mn、Zn、Ni、Cd主要富集在PM2.5中;Cr主要富集在PM10中;Cu主要富集在PM5中;Fe主要在粒径大于2.5μm的粗粒子中富集。除Zn外,其他7种元素浓度均表现为灰霾期采暖期采暖前。通过主因子分析表明,太原市大气颗粒物中重金属主要来源于冶金、有机合成工业、燃煤、汽车尾气、土壤尘等。  相似文献   

15.
The sediment in Dianchi Lake, a hypereutrophic plateau lake in southwest China, was investigated and the concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Fe, Mn, and Cd) in the sediment and sediment properties were determined. Their spatial distribution and sources were analyzed using multivariate statistics. The result indicated that the studied metals exhibited three distinct spatial patterns; that is, Cu, Pb, Zn, and Ni had a similar distribution, with a concentration gradient from the north to the south part of the lake; Cd and Cr presented a similar distribution; Fe and Mn presented a quite different distribution than other metals, which indicated their different sources and geochemistry processes. Correlation and cluster analysis (CA) provided origin information on these metals and the CA result was observed corresponding to those three spatial patterns. Principal component analysis further displayed metal source and driving factors; that is, Cu, Pb, Zn, Ni, Cd, and Cr were mainly derived from anthropogenic sources, and Fe and Mn were mainly the result of natural processes. Sediment assessment was conducted using geoaccumulation index (Igeo), potential ecological risk indices, and USEPA guidelines. The result indicated that, generally, Cd was the most serious risk metal; Pb and Cu posed moderate potential ecological risk; Cr, Zn, and Ni had slight ecological risk; Fe and Mn had little risk. Comparison of the assessment tools showed that each of the methods had its limitation and could bias the result, and the combined use of the methodologies and local knowledge on lithology or metal background value of soil in the practice would give a more comprehensive understanding of the metal risk or pollution. Statistical analysis also indicated that nutrients had different impacts on Fe, Mn, and trace elements, which implied that in the assessment of metal risk, nutrients impact should be taken into consideration especially for eutrophic waters.  相似文献   

16.
The geographical and temporal distribution patterns of airborne dust particulates have been studied in different representative areas of Raipur City. Dust fall samples from different sites were collected and some selected toxic metals namely Cr, Mn, Fe, Ni, Cu, Zn, Sb and Pb in them were determined by AAS. Total annual flux of 11.7, 541.4, 2751.0, 14.2, 9.8, 90.9, 17.6, and 17.7 kg km(-2) y(-1) were measured for Cr, Mn, Fe, Ni, Cu, Zn, Sb, and Pb respectively. The occurrence of metal concentration were generally in the order industrial > heavy traffic > commercial > residential area in Raipur city. The results of analysis show the existence of toxic metal concentration in the order Fe > Mn > Zn > Pb approximately Sb > Ni > Cr > Cu in Raipur city. These large levels of metal pollutants have also been correlated with some meteorological parameters like temperature, relative humidity and wind velocity, and strong positive correlations have been observed.  相似文献   

17.
A study was conducted to determine the levels of heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn along with physico-chemical parameters in ground waters of Aligarh city, U.P. (India). Twenty seven samples of hand pump water and twenty three samples of municipal water supply were collected from different localities of the Aligarh city, five times during the period of two months at intervals of 12 days. The samples were analysed for physico-chemical characteristics (pH, electrical conductivity, chlorides, sulphates, total hardness, total alkalinity, nitrate-nitrogen, fluoride, calcium and magnesium) and heavy metal contents. The concentrations of heavy metals in the hand pump water samples were found in the ranges of Cd (ND-5.00); Cr (ND-30.00); Cu (ND-82.50); Fe (16.80–460.00); Mn (ND-425.00); Ni (ND-25.00); Pb (ND-25.00) and Zn (28.60–775.00) g l–1. The heavy metal concentrations in the municipal water supply samples were found to be Cd (ND-5.00); Cr (ND-25.00); Cu (ND-37.50); Fe (8.00–37.50); Mn (ND-320.00); Ni (ND-25.00); Pb (ND-25.00) and Zn (2.00–271.87) g l–1.It appears from the results of these studies the concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the ground waters of the Aligarh City were found to be lower than the prescribed limits of World Health Organisation (1984), whereas the values of Fe and Mn were found above the prescribed limits in some localities. The chloride total hardness and nitrate-nitrogen were comparatively higher in the hand pump water than the municipal supply water. The reason of higher values of these parameters may be ascribed to the surface disposal of sewage wastes, wastes from metal processing industries and other house hold refuses.  相似文献   

18.
Heavy Metals Monitoring using Bivalves from Mediterranean Sea and Red Sea   总被引:1,自引:0,他引:1  
The concentrations of heavy metals (Cd, Co, Cu, Fe, Mn, Ni, Pd and Zn) were measured in the Bivalves (Modiolus auriculatus and Donax trunculus) collected from the Egyptian coasts of Mediterranean Sea and Brachiodonates sp. from the Egyptian coasts of Red Sea. The average concentrations of the heavy metals analyzed exhibited the following decreasing order: Fe > Zn > Cu > Mn > Ni > Co > Pb > Cd for both Mediterranean Sea and Red Sea. The analyses of Cd, Co, Ni, Pb, and Zn showed higher average concentrations for samples collected from Red Sea than that collected from Mediterranean Sea, while Fe, Cu and Mn showed the reverse results. Fe was used as a normalizing agent for all studied metals and exhibited presence of two locations from each of Mediterranean Sea and Red Sea have anthropogenic inputs of heavy metals. These results suggest that the coastal area in both Mediterranean Sea and Red Sea of Egypt might be considered relatively unpolluted with heavy metal.  相似文献   

19.
Sediment cores collected from different locations of Lake Umbozero were studied with respect to concentration and mobility of trace and heavy metals Co, Cu, Fe, Mn, Ni, Pb, U, and Zn. Lake Umbozero is the second largest lake in the Murmansk Region and subjected to contamination by air-borne emissions and river transportation from the nearby metallurgical and mining industries. Unlike its neighboring, more industry-prone Lake Imandra, Lake Umbozero is relatively unexplored with respect to its state of pollution. In our study, metal distribution in sediments was found to vary with respect to the cores, although in general the concentrations were at the same level throughout the lake indicating uniform horizontal distribution of metals. When compared to Lake Imandra, the concentrations of most of the metals studied were significantly lower and represented the levels in sediments measured in lakes of Kola Peninsula located further off from industrial pollutant sources. An exception was Pb the concentration of which was at the same level as in Lake Imandra, probably due to long-distance transport. Sediment layers were subjected to four-step sequential extraction procedure to reveal the metal distribution in soluble, exchangeable, acid-soluble, and residual fractions. Indicative of their potential higher lability, Mn, U, and Zn were generally found in exchangeable fraction; as also Mn and U extensively in the acid-soluble fraction.  相似文献   

20.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号