首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CNT-TiO2 composite is used to activate PMS under UV-light assistance. Superior performance is due to the enhanced electron-transfer ability of CNT. SO4, •OH and 1O2 play key roles in the degradation of organic pollutants. In this work, a UV-light assisted peroxymonosulfate (PMS) activation system was constructed with the composite catalyst of multi-walled carbon nanotubes (CNT) - titanium dioxide (TiO2). Under the UV light irradiation, the photoinduced electrons generated from TiO2 could be continuously transferred to CNT for the activation of PMS to improve the catalytic performance of organic pollutant degradation. Meanwhile, the separation of photoinduced electron-hole pairs could enhance the photocatalysis efficiency. The electron spin resonance spectroscopy (EPR) and quenching experiments confirmed the generation of sulfate radical (SO4), hydroxyl radical (•OH) and singlet oxygen (1O2) in the UV/PMS/20%CNT-TiO2 system. Almost 100% phenol degradation was observed within 20 min UV-light irradiation. The kinetic reaction rate constant of the UV/PMS/20%CNT-TiO2 system (0.18 min1) was 23.7 times higher than that of the PMS/Co3O4 system (0.0076 min1). This higher catalytic performance was ascribed to the introduction of photoinduced electrons, which could enhance the activation of PMS by the transfer of electrons in the UV/PMS/CNT-TiO2 system.  相似文献   

2.
Reviewed the change of ARGs and ARB in full-scale urban drinking water systems. Conventional processes are more promising than BAC process in ARGs removal. Mechanisms of ARGs enrichment and spread in BAC filter and DWDSs are discussed. Raise the need of future research on ARGs and ARB change in building plumbing systems. Antibiotic resistance in aquatic environment has become an important pollution problem worldwide. In recent years, much attention was paid to antibiotic resistance in urban drinking water systems due to its close relationship with the biosafety of drinking water. This review was focused on the mechanisms of antibiotic resistance, as well as the presence, dissemination and removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the urban drinking water system. First, the presence of ARB and ARGs in the drinking water source was discussed. The variation of concentration of ARGs and ARB during coagulation, sedimentation and filtration process were provided subsequently, in which filtration was proved to be a promising technology to remove ARGs. However, biological activated carbon (BAC) process and drinking water distribution systems (DWDSs) could be incubators which promote the antibiotic resistance, due to the enrichment of ARGs and ARB in the biofilms attached to the active carbon and pipe wall. Besides, as for disinfection process, mechanisms of the inactivation of ARB and the promotion of conjugative transfer of ARGs under chlorine, ozone and UV disinfection were described in detail. Here we provide some theoretical support for future researches which aim at antibiotic resistance controlling in drinking water.  相似文献   

3.
Extracellular DNA structure damaged by chlorination was characterized. Integrity of extracellular ARG genetic information after chlorination was determined. Typical chlorine doses will likely effectively diminish extracellular DNA and ARGs. Plasmid DNA/ARGs were less readily broken down than genomic DNA. The Bioanalyzer methodology effectively documented damage incurred to DNA. There is a need to improve understanding of the effect of chlorine disinfection on antibiotic resistance genes (ARGs) in order to advance relevant drinking water, wastewater, and reuse treatments. However, few studies have explicitly assessed the physical effects on the DNA. Here we examined the effects of free chlorine (1–20 mg Cl2/L) on extracellular genomic, plasmid DNA and select ARGs. Chlorination was found to decrease the fluorometric signal of extracellular genomic and plasmid DNA (ranging from 0.005 to 0.05 mg/mL) by 70%, relative to a no-chlorine control. Resulting DNA was further subject to a fragment analysis using a Bioanalyzer, indicating that chlorination resulted in fragmentation. Moreover, chlorine also effectively deactivated both chromosomal- and plasmid-borne ARGs, mecA and tetA, respectively. For concentrations >2 mg Cl2//L × 30 min, chlorine efficiently reduced the qPCR signal when the initial concentration of ARGs was 105 copies/mL or less. Notably, genomic DNA and mecA gene signals were more readily reduced by chlorine than the plasmid-borne tetA gene (by ~2 fold). Based on the results of qPCR with short (~200 bps) and long amplicons (~1200 bps), chlorination could destroy the integrity of ARGs, which likely reduces the possibility of natural transformation. Overall, our findings strongly illustrate that chlorination could be an effective method for inactivating extracellular chromosomal- and plasmid-borne DNA and ARGs.  相似文献   

4.
• Regulation of redox conditions promotes the generation of free radicals on HM. • HM-PFRs can be fractionated into active and inactive types depending on stability. • The newly produced PFRs readily release electrons to oxygen and generate ROS. • PFR-induced ROS mediate the transformation of organic contaminants adsorbed on HM. The role of humic substance-associated persistent free radicals (PFRs) in the fate of organic contaminants under various redox conditions remains unknown. This study examined the characterization of original metal-free peat humin (HM), and HM treated with varying concentrations of H2O2 and L-ascorbic acid (VC) (assigned as H2O2-HM and VC-HM). The concentration of PFRs in HM increased with the addition of VC/H2O2 at concentrations less than 0.08 M. The evolution of PFRs in HM under different environmental conditions (e.g., oxic/anoxic and humidity) was investigated. Two types of PFRs were detected in HM: a relatively stable radical existed in the original sample, and the other type, which was generated by redox treatments, was relatively unstable. The spin densities of VC/H2O2-HM readily returned to the original value under relatively high humidity and oxic conditions. During this process, the HM-associated “unstable” free radicals released an electron to O2, inducing the formation of reactive oxygen species (ROS, i.e., OH and O2). The generated ROS promoted the degradation of polycyclic aromatic hydrocarbons based on the radical quenching measurements. The transformation rates followed the order naphthalene>phenanthrene>anthracene>benzo[a]pyrene. Our results provide valuable insight into the HM-induced transformation of organic contaminants under natural conditions.  相似文献   

5.
• Published data was used to analyze the fate of ARGs in water treatment. • Biomass removal leads to the reduction in absolute abundance of ARGs. • Mechanism that filter biofilm maintain ARB/ARGs was summarized. • Potential BAR risks caused by biofiltration and chlorination were proposed. The bacterial antibiotic resistome (BAR) is one of the most serious contemporary medical challenges. The BAR problem in drinking water is receiving growing attention. In this study, we focused on the distribution, changes, and health risks of the BAR throughout the drinking water treatment system. We extracted the antibiotic resistance gene (ARG) data from recent publications and analyzed ARG profiles based on diversity, absolute abundance, and relative abundance. The absolute abundance of ARG was found to decrease with water treatment processes and was positively correlated with the abundance of 16S rRNA (r2 = 0.963, p<0.001), indicating that the reduction of ARG concentration was accompanied by decreasing biomass. Among treatment processes, biofiltration and chlorination were discovered to play important roles in shaping the bacterial antibiotic resistome. Chlorination exhibited positive effects in controlling the diversity of ARG, while biofiltration, especially granular activated carbon filtration, increased the diversity of ARG. Both biofiltration and chlorination altered the structure of the resistome by affecting relative ARG abundance. In addition, we analyzed the mechanism behind the impact of biofiltration and chlorination on the bacterial antibiotic resistome. By intercepting influent ARG-carrying bacteria, biofilters can enrich various ARGs and maintain ARGs in biofilm. Chlorination further selects bacteria co-resistant to chlorine and antibiotics. Finally, we proposed the BAR health risks caused by biofiltration and chlorination in water treatment. To reduce potential BAR risk in drinking water, membrane filtration technology and water boiling are recommended at the point of use.  相似文献   

6.
● EPS immobilizes U(VI) via adsorption, bioreduction and desorption. ● This work provides a framework to quantify the three immobilization processes. ● The non-equilibrium adsorption of U follows pseudo-second-order kinetics. ● The equilibrium adsorption of U followed Langmuir and Freundlich isotherms. Hexavalent uranium (U(VI)) can be immobilized by various microbes. The role of extracellular polymeric substances (EPS) in U(VI) immobilization has not been quantified. This work provides a model framework to quantify the contributions of three processes involved in EPS-mediated U(VI) immobilization: adsorption, bioreduction and desorption. Loosely associated EPS was extracted from a pure bacterial strain, Klebsiella sp. J1, and then exposed to H2 and O2 (no bioreduction control) to immobilize U(VI) in batch experiments. U(VI) immobilization was faster when exposed to H2 than O2 and stabilized at 94% for H2 and 85% for O2, respectively. The non-equilibrium data from the H2 experiments were best simulated by a kinetic model consisting of pseudo-second-order adsorption (ka = 2.87 × 10−3 g EPS·(mg U)−1·min−1), first-order bioreduction (kb = 0.112 min−1) and first-order desorption (kd = 7.00 × 10−3 min−1) and fitted the experimental data with R2 of 0.999. While adsorption was dominant in the first minute of the experiments with H2, bioreduction was dominant from the second minute to the 50th min. After 50 min, adsorption was negligible, and bioreduction was balanced by desorption. This work also provides the first set of equilibrium data for U(VI) adsorption by EPS alone. The equilibrium experiments with O2 were well simulated by both the Langmuir isotherm and the Freundlich isotherm, suggesting multiple mechanisms involved in the interactions between U(VI) and EPS. The thermodynamic study indicated that the adsorption of U(VI) onto EPS was endothermic, spontaneous and favorable at higher temperatures.  相似文献   

7.
MC-LR removal performances under different AOPs were compared systematically. Higher removal efficiency and synergistic effects were obtained by combined process. The acute biotoxicity raised in different degrees after oxidation. Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR were investigated and compared in this study. Both the removal efficiencies and rates of MC-LR as well as the biotoxicity of degradation products was analyzed. Results showed that the UV/H2O2 process and O3/H2O2 were effective methods to remove MC-LR from water, and they two performed better than UV-, O3-, H2O2-alone processes under the same conditions. The effects of UV intensity, H2O2 concentration and O3 concentration on the removal performance were explored. The synergistic effects between UV and H2O2, O3 and H2O2 were observed. UV dosage of 1800 mJ·cm2 was required to remove 90% of 100 mg·L1 MC-LR, which amount significantly decreased to 500 mJ·cm2 when 1.7 mg·L1 H2O2 was added. 0.25 mg·L1 O3, or 0.125 mg·L1 O3 with 1.7 mg·L1 H2O2 was needed to reach 90% removal efficiency. Furthermore, the biotoxicity results about these UV/H2O2, O3/H2O2 and O3-alone processes all present rising trends with oxidation degree of MC-LR. Biotoxicity of solution, equivalent to 0.01 mg·L1 Zn2+, raised to 0.05 mg·L1 Zn2+ after UV/H2O2 or O3/H2O2 reaction. This phenomenon may be attributed to the aldehydes and ketones with small molecular weight generated during reaction. Advice about the selection of MC-LR removal methods in real cases was provided.  相似文献   

8.
PE ball milling pretreatment induces higher H2 production and purity by gasification. Ca(OH)2 reacts at solid state with PE boosting H2 and capturing CO2. Ca(OH)2 significantly reduces methanation side-reaction. Polymer thermal recycling for hydrogen production is a promising process to recover such precious element from plastic waste. In the present work a simple but efficacious high energy milling pre-treatment is proposed to boost H2 generation during polyethylene gasification. The polymer is co-milled with calcium and nickel hydroxides and then it is subjected to thermal treatment. Results demonstrate the key role played by the calcium hydroxide that significantly ameliorates hydrogen production. It reacts in solid state with the polyethylene to form directly carbonate and hydrogen. In this way, the CO2 is immediately captured in solid form, thus shifting the equilibrium toward H2 generation and obtaining high production rate (>25 L/mol CH2). In addition, high amounts of the hydroxide prevent excessive methane formation, so the gas product is almost pure hydrogen (~95%).  相似文献   

9.
The distributions of ARGs were monitored in a WWTP in Harbin during six months. CASS had the best removal efficacy of ARGs compared to other processes in the WWTP. UV disinfection could effectively control the HGT. AGAC significantly remove ARGs and organics due to its high absorption capacity. Combination of ozone and AGAC significantly improve removal of ARGs and organics. Antibiotic resistance genes (ARGs) pose a serious threat to public health. Wastewater treatment plants (WWTPs) are essential for controlling the release of ARGs into the environment. This study investigated ARG distribution at every step in the treatment process of a municipal WWTP located in Harbin for six consecutive months. Changes in ARG distribution involved in two advanced secondary effluent treatment processes, ozonation and granular activated carbon (GAC) adsorption, were analyzed. Biological treatment resulted in the highest ARG removal (0.76–1.94 log reduction), followed by ultraviolet (UV) disinfection (less than 0.5-log reduction). Primary treatment could not significantly remove ARGs. ARG removal efficiency increased with an increase in the ozone dose below 40 mg/L. However, amorphous GAC (AGAC) adsorption with a hydraulic retention time (HRT) of 1 h showed better removal of ARGs, total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) than ozonation at a 60 mg/L dose. UV treatment could efficiently reduce the relative ARG abundance, despite presenting the lowest efficiency for the reduction of absolute ARG abundance compared with GAC and ozone treatments. The combination of ozone and AGAC can significantly improve the removal of ARGs, TOC, TN and TP. These results indicate that a treatment including biological processing, ozonation, and AGAC adsorption is a promising strategy for removing ARGs and refractory organic substances from sewage.  相似文献   

10.
Fe2O3-CeO2-Bi2O3/γ-Al2O3, an environmental friendly material, was investigated. The catalyst exhibited good catalytic performance in the CWAO of cationic red GTL. The apparent activation energy for the reaction was 79 kJ·mol−1. HO2· and O2· appeared as the main reactive species in the reaction. The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. The catalyst was prepared by wet impregnation, and characterized by special surface area (BET measurement), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst exhibited good catalytic activity and stability in the CWAO under atmosphere pressure. The effect of the reaction conditions (catalyst loading, degradation temperature, solution concentration and initial solution pH value) was studied. The result showed that the decolorization efficiency of cationic red GTL was improved with increasing the initial solution pH value and the degradation temperature. The apparent activation energy for the reaction was 79 kJ·mol1. Hydroperoxy radicals (HO2·) and superoxide radicals (O2·) appeared as the main reactive species upon the CWAO of cationic red GTL.  相似文献   

11.
• Gas diffusion electrode (GDE) is a suitable setup for practical water treatment. • Electrochemical H2O2 production is an economically competitive technology. • High current efficiency of H2O2 production was obtained with GDE at 5–400 mA/cm2. • GDE maintained high stability for H2O2 production for ~1000 h. • Electro-generation of H2O2 enhances ibuprofen removal in an E-peroxone process. This study evaluated the feasibility of electrochemical hydrogen peroxide (H2O2) production with gas diffusion electrode (GDE) for decentralized water treatment. Carbon black-polytetrafluoroethylene GDEs were prepared and tested in a continuous flow electrochemical cell for H2O2 production from oxygen reduction. Results showed that because of the effective oxygen transfer in GDEs, the electrode maintained high apparent current efficiencies (ACEs,>80%) for H2O2 production over a wide current density range of 5–400 mA/cm2, and H2O2 production rates as high as ~202 mg/h/cm2 could be obtained. Long-term stability test showed that the GDE maintained high ACEs (>85%) and low energy consumption (<10 kWh/kg H2O2) for H2O2 production for 42 d (~1000 h). However, the ACEs then decreased to ~70% in the following 4 days because water flooding of GDE pores considerably impeded oxygen transport at the late stage of the trial. Based on an electrode lifetime of 46 days, the overall cost for H2O2 production was estimated to be ~0.88 $/kg H2O2, including an electricity cost of 0.61 $/kg and an electrode capital cost of 0.27 $/kg. With a 9 cm2 GDE and 40 mA/cm2 current density, ~2–4 mg/L of H2O2 could be produced on site for the electro-peroxone treatment of a 1.2 m3/d groundwater flow, which considerably enhanced ibuprofen abatement compared with ozonation alone (~43%–59% vs. 7%). These findings suggest that electrochemical H2O2 production with GDEs holds great promise for the development of compact treatment technologies for decentralized water treatment at a household and community level.  相似文献   

12.
• Complete CT degradation was achieved by employing HA to CP/Fe(II)/FA process. • Quantitative detection of Fe(II) regeneration and HO• production was investigated. • Benzoic acid outcompeted FA for the reaction with HO•. • CO2 was the dominant reductive radical for CT removal. • Effects of solution matrix on CT removal were conducted. Hydroxyl radicals (HO•) show low reactivity with perchlorinated hydrocarbons, such as carbon tetrachloride (CT), in conventional Fenton reactions, therefore, the generation of reductive radicals has attracted increasing attention. This study investigated the enhancement of CT degradation by the synergistic effects of hydroxylamine (HA) and formic acid (FA) (initial [CT] = 0.13 mmol/L) in a Fe(II) activated calcium peroxide (CP) Fenton process. CT degradation increased from 56.6% to 99.9% with the addition of 0.78 mmol/L HA to the CP/Fe(II)/FA/CT process in a molar ratio of 12/6/12/1. The results also showed that the presence of HA enhanced the regeneration of Fe(II) from Fe(III), and the production of HO• increased one-fold when employing benzoic acid as the HO• probe. Additionally, FA slightly improves the production of HO•. A study of the mechanism confirmed that the carbon dioxide radical (CO2), a strong reductant generated by the reaction between FA and HO•, was the dominant radical responsible for CT degradation. Almost complete CT dechlorination was achieved in the process. The presence of humic acid and chloride ion slightly decreased CT removal, while high doses of bicarbonate and high pH inhibited CT degradation. This study helps us to better understand the synergistic roles of FA and HA for HO• and CO2 generation and the removal of perchlorinated hydrocarbons in modified Fenton systems.  相似文献   

13.
Linear, interactive and quadratic effects of process parameters were studied. Degradation of Ofloxacin (Ofx) was related with G value of irradiation process. The synergistic effect of H2O2 on lower dose of g-irradiation was established. The process follows pseudo first order with dose constant (d = 0.232 kGy1). The impact of human activities in the past few decades has paved the way for the release of pollutants due to the improper effluent treatment. Recent studies revealed that, Ofloxacin, an antibiotic as one of the major pollutant affecting surface water and ground water. In this study, the radiolytic potential of Ofloxacin was investigated. The effects of pH, dose and concentration of Ofloxacin were analyzed using One Factor At a Time (OFAT) and the interactive effects between the parameters were studied using Face Centered Central Composite Design. The statistically optimised developed model shows 30% degradation at initial antibiotic concentration of 1mM at pH 3.0 and at 2 kGy dose of gamma ray. The process efficiency was evaluated in terms of G value and its correlation with the concentration of antibiotic was also established. The process of degradation was augmented by the addition of H2O2 (1.5 mM). The reaction kinetics for the process was evaluated, the dose rate constant and the rate of degradation for the augmented process was found to be 0.232 kGy-1 and 0.232 mM/kGy, respectively. The degraded metabolites of the radiolytic degradation of Ofloxacin were analyzed through change in pH, reduction in TOC and GC-MS spectrum.  相似文献   

14.
• UV/chlorine can effectively remove VBNC pathogens, ARGs and MGEs in reclaimed water. • Microbial community was changed with reduced diversity during UV/chlorine process. • CRBs-carried MGEswere the predominant groups during UV/chlorine process. • No direct co-selection strategy was shared between UV/chlorine and resistome. Urban wastewater contains a wide range of pathogens and antibiotic resistance genes (ARGs), which are a serious concern if reusing treated wastewater. However, few studies have explored the microbial communities in reclaimed water using ultraviolet (UV)/chlorine treatment and assessed the changes of the resistome. This study investigated the occurrence of typical pathogens, ARGs, and bacterial communities in UV/chlorine-treated reclaimed water samples. The numbers of culturable and viable but non-culturable pathogens were effectively reduced to 0 CFU/mL within 1–10 and 10–30 min after UV/chlorine treatment, respectively. Meanwhile, the physicochemical indices of water quality were not affected. UV/chlorine treatment could significantly change the bacterial community structure of reclaimed water, showing a decrease in bacterial abundance and diversity. Chlorine-resistant Acinetobacter and Mycobacterium were the dominant bacterial genera (>50%) after UV/chlorine treatment. Moreover, the number of ARGs and mobile genetic elements (MGEs) decreased with an increase in UV/chlorine exposure. However, eight ARGs and three MGEs were consistently detected in more than three seasons, making these major concerns because of their potential role in the persistence and dissemination of antibiotic resistance. Overall, the results of this study suggest that UV/chlorine treatment can potentially improve the microbiological safety of reclaimed water. And more attention should be paid to the pathogens that are both chlorine-resistant and carry MGEs because of their potential for resistance transmission.  相似文献   

15.
• The MCNZVI is prepared as an interesting material for PS activation. • Graphitized carbon shells facilitate electron transfer from Fe0. • The MCNZVI exhibits excellent performance to degrade RB5 by 1O2. • The MCNZVI has high stability and reusability in the oxidation system. High-efficiency and cost-effective catalysts with available strategies for persulfate (PS) activation are critical for the complete mineralization of organic contaminants in the environmental remediation and protection fields. A nanoscale zero-valent iron-embedded modified mesoporous carbon (MCNZVI) with a core-shell structure is synthesized using the hydrothermal synthesis method and high-temperature pyrolysis. The results showed that nZVI could be impregnated within mesoporous carbon frameworks with a comparatively high graphitization degree, rich nitrogen doping content, and a large surface area and pore volume. This material was used as a persulfate activator for the oxidation removal of Reactive Black 5 (RB5). The effects of the material dosage, PS concentration, pH, and some inorganic anions (i.e., Cl, SO42) on RB5 degradation were then investigated. The highest degradation efficiency (97.3%) of RB5 was achieved via PS (20 mmol/L) activation by the MCNZVI (0.5 g/L). The pseudo-first-order kinetics (k = 2.11 × 102 min1) in the MCNZVI/PS (0.5 g/L, 20 mmol/L) was greater than 100 times than that in the MCNZVI and PS. The reactive oxygen species (ROS), including 1O2, SO4·, HO·, and ·O2, were generated by PS activation with the MCNZVI. Singlet oxygen was demonstrated to be the primary ROS responsible for the RB5 degradation. The MCNZVI could be reused and regenerated for recycling. This work provides new insights into PS activation to remove organic contamination.  相似文献   

16.
• Quantitative global ARGs profile in dialysis water was investigated. • Totally 35 ARGs were found in the dialysis treatment train. • 29 ARGs (highest) were found in carbon filtration effluent. erm and mtrD-02 occurred in the final effluent. • The effluent was associated with health risks even after RO treatment. Dialysis water is directly related to the safety of hemodialysis patients, thus its quality is generally ensured by a stepwise water purification cascade. To study the effect of water treatment on the presence of antibiotic resistance genes (ARGs) in dialysis water, this study used propidium monoazide (PMA) in conjunction with high throughput quantitative PCR to analyze the diversity and abundance of ARGs found in viable bacteria from water having undergone various water treatment processes. The results indicated the presence of 35 ARGs in the effluents from the different water treatment steps. Twenty-nine ARGs were found in viable bacteria from the effluent following carbon filtration, the highest among all of the treatment processes, and at 6.96 Log (copies/L) the absolute abundance of the cphA gene was the highest. Two resistance genes, erm (36) and mtrD-02, which belong to the resistance categories macrolides-lincosamides-streptogramin B (MLSB) and other/efflux pump, respectively, were detected in the effluent following reverse osmosis treatment. Both of these genes have demonstrated the potential for horizontal gene transfer. These results indicated that the treated effluent from reverse osmosis, the final treatment step in dialysis-water production, was associated with potential health risks.  相似文献   

17.
• Sub-inhibitory levels of nC60 promote conjugative transfer of ARGs. • nC60 can induce ROS generation, oxidative stress and SOS response. • nC60 can increase cell membrane permeability and alter gene expression. • Results provide evidence of nC60 promoting antibiotic resistance dissemination. The spread and development of antibiotic resistance globally have led to severe public health problems. It has been shown that some non-antibiotic substances can also promote the diffusion and spread of antibiotic resistance genes (ARGs). Nanofullerene (nC60) is a type of nanomaterial widely used around the world, and some studies have discovered both the biological toxicity and environmental toxicity of nC60. In this study, cellular and molecular biology techniques were employed to investigate the influences of nC60 at sub-minimum inhibitory concentrations (sub-MICs) on the conjugation of ARGs between the E. coli strains. Compared with the control group, nC60 significantly increased the conjugation rates of ARGs by 1.32‒10.82 folds within the concentration range of 7.03‒1800 mg/L. This study further explored the mechanism of this phenomenon, finding that sub-MICs of nC60 could induce the production of reactive oxygen species (ROS), trigger SOS-response and oxidative stress, affect the expression of outer membrane proteins (OMPs) genes, increase membrane permeability, and thus promote the occurrence of conjugation. This research enriches our understanding of the environmental toxicity of nC60, raises our risk awareness toward nC60, and may promote the more rational employment of nC60 materials.  相似文献   

18.
• Real ML-GFW with high salinity and high organics was degraded by O3/H2O2 process. • Successful optimization of operation conditions was attained using RSM based on CCD. • Single-factor experiments in advance ensured optimal experimental conditions. • The satisfactory removal efficiency of TOC was achieved in spite of high salinity. • The initial pH plays the most significant role in the degradation of ML-GFW. The present study reports the use of the O3/H2O2 process in the pretreatment of the mother liquor of gas field wastewater (ML-GFW), obtained from the multi-effect distillation treatment of the gas field wastewater. The range of optimal operation conditions was obtained by single-factor experiments. Response surface methodology (RSM) based on the central composite design (CCD) was used for the optimization procedure. A regression model with Total organic carbon (TOC) removal efficiency as the response value was established (R2 = 0.9865). The three key factors were arranged according to their significance as: pH>H2O2 dosage>ozone flow rate. The model predicted that the best operation conditions could be obtained at a pH of 10.9, an ozone flow rate of 0.8 L/min, and H2O2 dosage of 6.2 mL. The dosing ratio of ozone was calculated to be 9.84 mg O3/mg TOC. The maximum removal efficiency predicted was 75.9%, while the measured value was 72.3%. The relative deviation was found to be in an acceptable range. The ozone utilization and free radical quenching experiments showed that the addition of H2O2 promoted the decomposition of ozone to produce hydroxyl radicals (·OH). This also improved the ozone utilization efficiency. Gas chromatography-mass spectrometry (GC-MS) analysis showed that most of the organic matters in ML-GFW were degraded, while some residuals needed further treatment. This study provided the data and the necessary technical supports for further research on the treatment of ML-GFW.  相似文献   

19.
• UVA pre-irradiation to TiO2 NPs enhanced its toxicity toward plant A. cepa. • UVA TiO2 NPs increased intracellular ROS, resulting in more cell damage. • Cell death enhanced cell permeability and increased uptake of NPs. • Being highly toxic (EC50 = 0.097 µmol/L), TC did not increase ROS generation. • Even at a low dose, TC enhanced the toxic potential of TiO2 NPs significantly. Usage of titanium dioxide nanoparticles (TiO2 NPs) and tetracycline (TC) has increased significantly in the present era. This leads to their release and accumulation in the environment. Both the compounds, individually, can have adverse toxic effects on the plants. Their binary mixtures can increase this degree of damage. The present study aimed to evaluate the toxicity of both the contaminants in individual and binary mixtures in Allium cepa. Further, the toxicity of TiO2 NPs upon UVA pre-irradiation was also measured. Results showed that UVA pre-irradiated NPs (UVA-TiO2 NPs) had a significant decrease in cell viability than their non-irradiated counterparts (NI-TiO2), denoting an increase in photocatalytic activity upon UVA pre-irradiation. Very low concentrations of TC (EC10 = 0.016 µmol/L) mixed with TiO2 NPs significantly increased the toxicity for both UVA-TiO2 and NI-TiO2 NPs. Intracellular ROS generation was significantly high for UVA-TiO2 NPs. However, TC did not have any effects on ROS production. Both the compounds exhibited genotoxic potential in A. cepa. Different chromosomal abnormalities like anaphase bridges, telophase bridges, laggard chromosomes, binucleate cells, etc. were observed. The binary mixture of UVA-TiO2 NPs and TC showed the highest chromosomal aberrations (64.0%±1.26%) than the mixture with NI-TiO2 or the individual contaminants. This decreased significantly after recovery (46.8%±1.92%), denoting the self-repair processes. This study proved that UVA-TiO2 NPs were more toxic and could be enhanced further when mixed with a sub-lethal concentration of TC. This work will help to assess the risk of both compounds in the environment.  相似文献   

20.
• UV/VUV/I induces substantial H2O2 and IO3 formation, but UV/I does not. • Increasing DO level in water enhances H2O2 and iodate productions. • Increasing pH decreases H2O2 and iodate formation and also photo-oxidation. • The redox potentials of UV/VUV/I and UV/VUV changes with pH changes. • The treatability of the UV/VUV/I process was stronger than UV/VUV at pH 11.0. Recently, a photochemical process induced by ultraviolet (UV), vacuum UV (VUV), and iodide (I) has gained attention for its robust potential for contaminant degradation. However, the mechanisms behind this process remain unclear because both oxidizing and reducing reactants are likely generated. To better understand this process, this study examined the evolutions of hydrogen peroxide (H2O2) and iodine species (i.e., iodide, iodate, and triiodide) during the UV/VUV/I process under varying pH and dissolved oxygen (DO) conditions. Results show that increasing DO in water enhanced H2O2 and iodate production, suggesting that high DO favors the formation of oxidizing species. In contrast, increasing pH (from 6.0 to 11.0) resulted in lower H2O2 and iodate formation, indicating that there was a decrease of oxidative capacity for the UV/VUV/I process. In addition, difluoroacetic acid (DFAA) was used as an exemplar contaminant to verify above observations. Although its degradation kinetics did not follow a constant trend as pH increases, the relative importance of mineralization appeared declining, suggesting that there was a redox transition from an oxidizing environment to a reducing environment as pH rises. The treatability of the UV/VUV/I process was stronger than UV/VUV under pH of 11.0, while UV/VUV process presented a better performance at pH lower than 11.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号