首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of three-phase separator did not affect COD removal in the EAnCMBR. The existence of three-phase separator aggravated methane leakage of EAnCMBR. The existence of three-phase separator aggravated membrane fouling rate of EAnCMBR. Start-up of EAnCMBR equipped three-phase separator was slightly delayed. The three-phase separator is a critical component of high-rate anaerobic bioreactors due to its significant contribution in separation of biomass, wastewater, and biogas. However, its role in an anaerobic membrane bioreactor is still not clear. In this study, the distinction between an external anaerobic ceramic membrane bioreactor (EAnCMBR) unequipped (R1) and equipped (R2) with a three-phase separator was investigated in terms of treatment performance, membrane fouling, extracellular polymers of sludge, and microbial community structure. The results indicate that the COD removal efficiencies of R1 and R2 were 98.2%±0.4% and 98.1%±0.4%, respectively, but the start-up period of R2 was slightly delayed. Moreover, the membrane fouling rate of R2 (0.4 kPa/d) was higher than that of R1 (0.2 kPa/d). Interestingly, the methane leakage from R2 (0.1 L/d) was 20 times higher than that from R1 (0.005 L/d). The results demonstrate that the three-phase separator aggravated the membrane fouling rate and methane leakage in the EAnCMBR. Therefore, this study provides a novel perspective on the effects of a three-phase separator in an EAnCMBR.  相似文献   

2.
The inhibition ratio sharply increased with the increasing COD. The absorbance of UV-vis at 420 nm showed a linear correlation with the SMA. The molecular structure of EPS has changed when COD was 9585 mg/L. Illumina Miseq sequencing was employed to reveal the microbial composition. The synthesis of 2-butenal, which is a vital raw material for the production of sorbic acid as a food preservative, generates some toxic by-products, so it is urgent to seek better detoxification strategies for the treatment of 2-butenal manufacture wastewater. In this study, batch experiments were carried out to investigate the inhibition effect of wastewater on the methanogenic activity. To understand the wastewater toxicity to anaerobic granular sludge, variations of the specific methanogenic activity (SMA) and extracellular polymeric substance (EPS) constituents at various wastewater CODs were investigated. Ultraviolet-visible (UV-vis) spectra and Fourier transform infrared (FT-IR) spectra were employed to analyze the structure of the EPS. The results showed that the inhibitory ratio of 2-butenal manufacture wastewater was less than 8.4% on the anaerobic granular sludge when the CODs were less than 959 mg/L. However, the inhibitory ratio increased from 36.4% to 93.6% when CODs increased from 2396 mg/L to 9585 mg/L, with the SMA decreasing from 39.1 mL CH4/(gVSS·d) to 3.2 mL CH4/(gVSS·d). The diversity of the microbial community under various CODs was researched by Illumina 16S rRNA Miseq sequencing and the results demonstrated that ProteiniphilumPetrimonas and Syntrophobacter were the dominant bacteria genera in all sample. Regarding archaea, Methanobacterium was the most dominated archaea genera, followed by the Methanosaeta group in all samples. Moreover, the bacterial communities had changed obviously with increasing CODs, which indicated high CODs played a negative impact on the richness and diversity of bacterial community in the sludge samples.  相似文献   

3.
The UASB system successfully treated sulfamethoxazole pharmaceutical wastewater. High concentration sulfate of this wastewater was the main refractory factor. UASB recovery performance after a few days of inflow arrest was studied. The optimal UASB operating conditions for practical application were determined. Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge. In this study, a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion, and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration. A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand (COD), organic loading rate (OLR), and COD/SO42? ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance. The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO42? ratio. For the treated sulfamethoxazole pharmaceutical wastewater, a COD of 4983 mg/L (diluted by 50%), OLR of 2.5 kg COD/(m3·d), and COD/SO42? ratio of more than 5 were suitable for practical applications. The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.  相似文献   

4.
Phosphorus removal was enhanced effectively by dosing aluminum sulfate and effluent phosphorus concentration was lower than 0.5 mg/L. Sludge activity was not inhibited but improved slightly with addition of aluminum sulfate. EPS concentrations both in mixed liquid and on membrane surface were decreased, contributing to the effective mitigation of membrane fouling. To enhance phosphorus removal and make the effluent meet the strict discharge level of total phosphorus (TP, 0.5 mg/L), flocculant dosing is frequently applied. In this study, the performance of aluminum sulfate dosing in a University of Cape Town Membrane Bioreactor (UCT-MBR) was investigated, in terms of the nutrients removal performance, sludge characteristics and membrane fouling. The results indicated that the addition of aluminum sulfate into the aerobic reactor continuously had significantly enhanced phosphorus removal. Moreover, COD, NH4+-N and TN removal were not affected and effluent all met the first level A criteria of GB18918-2002. In addition, the addition of aluminum sulfate had improved the sludge activity slightly and reduced trans-membrane pressure (TMP) increase rate from 1.13 KPa/d to 0.57 KPa/d effectively. The membrane fouling was alleviated attributed to the increased average particle sizes and the decreased accumulation of the small sludge particles on membrane surface. Furthermore, the decline of extracellular polymeric substance (EPS) concentration in mixed sludge liquid decreased its accumulation on membrane surface, resulting in the mitigation of membrane fouling directly.  相似文献   

5.
COD/N at low ratios (0–0.82) improved N removals of CANON. CANON performance decreased after COD/N up to 0.82. The relative abundance of AOB decreased continuously with increasing COD/N. AOB outcompeted at a high COD load led to CANON failure. The relative abundance of AnAOB decreased and increased with increasing COD/N. The effects of increasing COD/N on nitrogen removal performance and microbial structure were investigated in a SBR adopting a completely autotrophic nitrogen removal over nitrite process with a continuous aeration mode (DO at approximately 0.15–0.2 mg/L). As the COD/N increased from 0.1 to≤0.59, the nitrogen removal efficiency (NRE) increased from 88.7% to 95.5%; while at COD/N ratios of 0.59–0.82, the NRE remained at 90.7%–95.5%. As the COD/N increased from 0.82 to 1.07, the NRE decreased continuously until reaching 60.1%. Nitrosomonas sp. (AOB) and Candidatus Jettenia (anammox bacteria) were the main functional genera in the SBR. As the COD/N increased from 0.10 to 1.07, the relative abundance of Nitrosomonas decreased from 13.4% to 2.0%, while that of Candidatus Jettenia decreased from 35% to 9.9% with COD/N<0.82 then increased to 45.4% at a COD/N of 1.07. Aerobic heterotrophic bacteria outcompeted AOB at high COD loadings (650 mg/L) because of oxygen competition, which ultimately led to deteriorated nitrogen removal performance.  相似文献   

6.
Green source Ep was extracted from marine alga waste. The molecule model structure of Ep was studied and constructed. PAC-Ep coagulation system improves the efficiency of removal efficiency. Synergistic effects between NPs and HA make a big difference to enhance efficiency. Mechanism is charge neutralization, hydrogen bonding and adsorbing-complexing Enteromorpha polysaccharide (Ep) extracted from alga a novel green coagulant aid for nanoparticles (NPs) and heavy metal ions removal and the structure of EP was intensively studied in this study. The integration of Ep with polyaluminum chloride (PAC-Ep) coagulants exhibited higher coagulation performance than that of the polyaluminum chloride (PAC) because of the negatively charged NPs suspension and humic aid (HA) solution. Significant high removal efficiencies of dissolved organic matter (94.1%), turbidity (99.3%) and Zn ions (69.3%) were achieved by the PAC-Ep coagulants. The dual-coagulation properties of PAC-Ep for different pollutants was based on multiple mechanisms, including (i) Al3+ charge neutralization; (ii) hydroxy aluminum hydroxyl bridging formed polynuclearhydroxy complexes bridge and sweep colloidal particles; (iii) adsorption and bridging of Ep chain for the NPs and heavy metal ions. Results indicated that the destabilization of colloid was induced by the coexisting HA and higher removal was achieved as ions adsorption was enhance in the presence of HA complexation. On the basis of that, the extraction of polysaccharide is a promising candidate for its high coagulation performance in water treatment.  相似文献   

7.
Sludge digestion is critical to control the spread of ARGs from wastewater to soil. Fate of ARGs in three pretreatment-AD processes was investigated. UP was more efficient for ARGs removal than AP and THP in pretreatment-AD process. The total ARGs concentration showed significant correlation with 16S rRNA gene. The bacteria carrying ARGs could be mainly affiliated with Proteobacteria. Sewage sludge in the wastewater treatment plants contains considerable amount of antibiotic resistance genes (ARGs). A few studies have reported that anaerobic digestion (AD) could successfully remove some ARGs from sewage sludge, but information on the fate of ARGs in sludge pretreatment-AD process is still very limited. In this study, three sludge pretreatment methods, including alkaline, thermal hydrolysis and ultrasonic pretreatments, were compared to investigate the distribution and removal of ARGs in the sludge pretreatment-AD process. Results showed that the ARGs removal efficiency of AD itself was approximately 50.77%, and if these three sludge pretreatments were applied, the total ARGs removal efficiency of the whole pretreatment-AD process could be improved up to 52.50%–75.07%. The ultrasonic pretreatment was more efficient than alkaline and thermal hydrolysis pretreatments. Although thermal hydrolysis reduced ARGs obviously, the total ARGs rebounded considerably after inoculation and were only removed slightly in the subsequent AD process. Furthermore, it was found that the total ARGs concentration significantly correlated with the amount of 16S rRNA gene during the pretreatment and AD processes, and the bacteria carrying ARGs could be mainly affiliated with Proteobacteria.  相似文献   

8.
Dielectrophoresis (DEP) process could enhance the removal the Cd2+ and Pb2+ with less absorbent. The removal rates of both Cd2+ and Pb2+ increased with the increase of voltage. The overall removal rate of Cd2+ and Pb2+ in the binary system is higher than that of Cd2+ or Pb2+ in the single system. DEP could cause considerable changes of the bentonite particles in both surface morphology and microstructure. Dielectrophoresis (DEP) was combined with adsorption (ADS) to simultaneously and effectively remove Cd2+ and Pb2+ species from aqueous solution. To implement the process, bentonite particles of submicro-meter size were used to first adsorb the heavy metal ions. These particles were subsequently trapped and removed by DEP. The effects of the adsorbent dosage, DEP cell voltage and the capture pool numbers on the removal rate were investigated in batch processes, which allowed us to determine the optimal experimental conditions. The high removal efficiency, 97.3% and 99.9% for Cd2+ and Pb2+, respectively, were achieved when the ions are coexisting in the system. The microstructure of bentonite particles before and after ADS/DEP was examined by scanning electron microscopy. Our results suggest that the dielectrophoresis-assisted adsorption method has a high capability to remove the heavy metals from wastewater.  相似文献   

9.
• 90% total COD, 95.3% inert COD and 97.2% UV254 were removed. • High R2 values (over 95%) for all responses were obtained with CCD. • Operational cost was calculated to be 0.238 €/g CODremoved for total COD removal. • Fenton oxidation was highly-efficient method for inert COD removal. • BOD5/COD ratio of leachate concentrate raised from 0.04 to 0.4. The primary aim of this study is inert COD removal from leachate nanofiltration concentrate because of its high concentration of resistant organic pollutants. Within this framework, this study focuses on the treatability of leachate nanofiltration concentrate through Fenton oxidation and optimization of process parameters to reach the maximum pollutant removal by using response surface methodology (RSM). Initial pH, Fe2+ concentration, H2O2/Fe2+ molar ratio and oxidation time are selected as the independent variables, whereas total COD, color, inert COD and UV254 removal are selected as the responses. According to the ANOVA results, the R2 values of all responses are found to be over 95%. Under the optimum conditions determined by the model (pH: 3.99, Fe2+: 150 mmol/L, H2O2/Fe2+: 3.27 and oxidation time: 84.8 min), the maximum COD removal efficiency is determined as 91.4% by the model. The color, inert COD and UV254 removal efficiencies are determined to be 99.9%, 97.2% and 99.5%, respectively, by the model, whereas the total COD, color, inert COD and UV254 removal efficiencies are found respectively to be 90%, 96.5%, 95.3% and 97.2%, experimentally under the optimum operating conditions. The Fenton process improves the biodegradability of the leachate NF concentrate, increasing the BOD5/COD ratio from the value of 0.04 to the value of 0.4. The operational cost of the process is calculated to be 0.238 €/g CODremoved. The results indicate that the Fenton oxidation process is an efficient and economical technology in improvement of the biological degradability of leachate nanofiltration concentrate and in removal of resistant organic pollutants.  相似文献   

10.
• Two IFAS and two MBBR full-scale systems (high COD:N ratio 8:1) were characterized. • High specific surface area carriers grew and retained slow-growing nitrifiers. • High TN removal is related to high SRT and low DO concentration in anoxic tanks. The relative locations of AOB, NOB, and DNB were examined for three different kinds of carriers in two types of hybrid biofilm process configurations: integrated fixed-film activated sludge (IFAS) and moving bed biofilm reactor (MBBR) processes. IFAS water resource recovery facilities (WRRFs) used AnodkalnessTM K1 carriers (KC) at Broomfield, Colorado, USA and polypropylene resin carriers (RC) at Fukuoka, Japan, while MBBR WRRFs used KC carriers at South Adams County, Colorado, USA and sponge carriers (SC) at Saga, Japan. Influent COD to N ratios ranged from 8:1 to 15:1. The COD and BOD removal efficiencies were high (96%–98%); NH4+-N and TN removal efficiencies were more varied at 72%–98% and 64%–77%, respectively. The extent of TN removal was higher at high SRT, high COD:N ratio and low DO concentration in the anoxic tank. In IFAS, RC with high specific surface area (SSA) maintained higher AOB population than KC. Sponge carriers with high SSA maintained higher overall bacteria population than KC in MBBR systems. However, the DNB were not more abundant in high SSA carriers. The diversity of AOB, NOB, and DNB was fairly similar in different carriers. Nitrosomonas sp. dominated over Nitrosospira sp. while denitrifying bacteria included Rhodobacter sp., Sulfuritalea sp., Rubrivivax sp., Paracoccus sp., and Pseudomonas sp. The results from this work suggest that high SRT, high COD:N ratio, low DO concentration in anoxic tanks, and carriers with greater surface area may be recommended for high COD, BOD and TN removal in WRRFs with IFAS and MBBR systems.  相似文献   

11.
Poor biodegradability and insufficient carbon source are discovered from influent. Influent indices presented positively normal distribution or skewed distribution. Average energy consumption of WWTPs in Taihu Basin was as high as 0.458 kWh/m3. Energy consumption increases with the increase in influent volume and COD reduction. The total energy consumption decreases with the NH3-N reduction. The water quality and energy consumption of wastewater treatment plants (WWTPs) in Taihu Basin were evaluated on the basis of the operation data from 204 municipal WWTPs in the basin by using various statistical methods. The influent ammonia nitrogen (NH3-N) and total nitrogen (TN) of WWTPs in Taihu Basin showed normal distribution, whereas chemical oxygen demand (COD), biochemical oxygen demand (BOD5), suspended solid (SS), and total phosphorus (TP) showed positively skewed distribution. The influent BOD5/COD was 0.4%–0.6%, only 39.2% SS/BOD5 exceeded the standard by 36.3%, the average BOD5/TN was 3.82, and the probability of influent BOD5/TP>20 was 82.8%. The average energy consumption of WWTPs in Taihu Basin in 2017 was 0.458 kWh/m3. The specific energy consumption of WWTPs with a daily treatment capacity of more than 5 × 104 m3 in Taihu Basin was stable at 0.33 kWh/m3. A power function relationship was observed between the reduction in COD and NH3-N and the specific energy consumption of pollutant reduction, and the higher the pollutant reduction is, the lower the specific energy consumption of pollutant reduction presents. In addition, a linear relationship existed between the energy consumption of WWTPs and the specific energy consumption of influent volume and pollutant reduction. Therefore, upgrading and operation with less energy consumption of WWTPs is imperative and the suggestions for Taihu WWTPs based on stringent discharge standard are proposed in detail.  相似文献   

12.
The distributions of ARGs were monitored in a WWTP in Harbin during six months. CASS had the best removal efficacy of ARGs compared to other processes in the WWTP. UV disinfection could effectively control the HGT. AGAC significantly remove ARGs and organics due to its high absorption capacity. Combination of ozone and AGAC significantly improve removal of ARGs and organics. Antibiotic resistance genes (ARGs) pose a serious threat to public health. Wastewater treatment plants (WWTPs) are essential for controlling the release of ARGs into the environment. This study investigated ARG distribution at every step in the treatment process of a municipal WWTP located in Harbin for six consecutive months. Changes in ARG distribution involved in two advanced secondary effluent treatment processes, ozonation and granular activated carbon (GAC) adsorption, were analyzed. Biological treatment resulted in the highest ARG removal (0.76–1.94 log reduction), followed by ultraviolet (UV) disinfection (less than 0.5-log reduction). Primary treatment could not significantly remove ARGs. ARG removal efficiency increased with an increase in the ozone dose below 40 mg/L. However, amorphous GAC (AGAC) adsorption with a hydraulic retention time (HRT) of 1 h showed better removal of ARGs, total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) than ozonation at a 60 mg/L dose. UV treatment could efficiently reduce the relative ARG abundance, despite presenting the lowest efficiency for the reduction of absolute ARG abundance compared with GAC and ozone treatments. The combination of ozone and AGAC can significantly improve the removal of ARGs, TOC, TN and TP. These results indicate that a treatment including biological processing, ozonation, and AGAC adsorption is a promising strategy for removing ARGs and refractory organic substances from sewage.  相似文献   

13.
• Sludge fermentation liquid addition resulted in a high NAR of 97.4%. • Extra NH4+-N from SFL was removed by anammox in anoxic phase. • Nitrogen removal efficiency of 92.51% was achieved in municipal wastewater. • The novel system could efficiently treat low COD/N municipal wastewater. Biological nitrogen removal of wastewater with low COD/N ratio could be enhanced by the addition of wasted sludge fermentation liquid (SFL), but the performance is usually limited by the introducing ammonium. In this study, the process of using SFL was successfully improved by involving anammox process. Real municipal wastewater with a low C/N ratio of 2.8–3.4 was treated in a sequencing batch reactor (SBR). The SBR was operated under anaerobic-aerobic-anoxic (AOA) mode and excess SFL was added into the anoxic phase. Stable short-cut nitrification was achieved after 46d and then anammox sludge was inoculated. In the stable period, effluent total inorganic nitrogen (TIN) was less than 4.3 mg/L with removal efficiency of 92.3%. Further analysis suggests that anammox bacteria, mainly affiliated with Candidatus_Kuenenia, successfully reduced the external ammonia from the SFL and contributed approximately 28%–43% to TIN removal. Overall, this study suggests anammox could be combined with SFL addition, resulting in a stable enhanced nitrogen biological removal.  相似文献   

14.
• CW-Fe allowed a high-performance of NO3-N removal at the COD/N ratio of 0. • Higher COD/N resulted in lower chem-denitrification and higher bio-denitrification. • The application of s-Fe0 contributed to TIN removal in wetland mesocosm. • s-Fe0 changed the main denitrifiers in wetland mesocosm. Sponge iron (s-Fe0) is a porous metal with the potential to be an electron donor for denitrification. This study aims to evaluate the feasibility of using s-Fe0 as the substrate of wetland mesocosms. Here, wetland mesocosms with the addition of s-Fe0 particles (CW-Fe) and a blank control group (CW-CK) were established. The NO3-N reduction property and water quality parameters (pH, DO, and ORP) were examined at three COD/N ratios (0, 5, and 10). Results showed that the NO3-N removal efficiencies were significantly increased by 6.6 to 58.9% in the presence of s-Fe0. NH4+-N was mainly produced by chemical denitrification, and approximately 50% of the NO3-N was reduced to NH4+-N, at the COD/ratio of 0. An increase of the influent COD/N ratio resulted in lower chemical denitrification and higher bio-denitrification. Although chemical denitrification mediated by s-Fe0 led to an accumulation of NH4+-N at COD/N ratios of 0 and 5, the TIN removal efficiencies increased by 4.5%‒12.4%. Moreover, the effluent pH, DO, and ORP values showed a significant negative correlation with total Fe and Fe (II) (P<0.01). High-throughput sequencing analysis indicated that Trichococcus (77.2%) was the most abundant microorganism in the CW-Fe mesocosm, while Thauera, Zoogloea, and Herbaspirillum were the primary denitrifying bacteria. The denitrifiers, Simplicispira, Dechloromonas, and Denitratisoma, were the dominant bacteria for CW-CK. This study provides a valuable method and an improved understanding of NO3-N reduction characteristics of s-Fe0 in a wetland mesocosm.  相似文献   

15.
• Hydrothermal treatment can greatly improve resource recovery from sewage sludge. • tCOD removal during WO was ~55% compared with ~23% after TH. • TOC solubilization during hydrothermal treatment followed first-order kinetics. • Solids and carbon balance confirmed loss of organics during thermal hydrolysis. • Reaction pathways for thermal hydrolysis and wet oxidation are proposed. We evaluated the effect of hydrothermal pretreatments, i.e., thermal hydrolysis (TH) and wet oxidation (WO) on sewage sludge to promote resource recovery. The hydrothermal processes were performed under mild temperature conditions (140°C–180°C) in a high pressure reactor. The reaction in acidic environment (pH= 3.3) suppressed the formation of the color imparting undesirable Maillard’s compounds. The oxidative conditions resulted in higher volatile suspended solids (VSS) reduction (~90%) and chemical oxygen demand (COD) removal (~55%) whereas TH caused VSS and COD removals of ~65% and ~27%, respectively at a temperature of 180°C. During TH, the concentrations of carbohydrates and proteins in treated sludge were 400–1000 mg/L and 1500–2500 mg/L, respectively. Whereas, WO resulted in solids solubilization followed by oxidative degradation of organics into smaller molecular weight carboxylic acids such as acetic acid (~400–500 mg/L). Based on sludge transformation products generated during the hydrothermal pretreatments, simplified reaction pathways are predicted. Finally, the application of macromolecules (such as proteins), VFAs and nutrients present in the treated sludge are also discussed. The future study should focus on the development of economic recovery methods for various value-added compounds.  相似文献   

16.
• Effects of metabolic uncoupler TCS on the performances of GDMBR were evaluated. • Sludge EPS reduced and transformed into dissolved SMP when TCS was added. • Appropriate TCS increased the permeability and reduced cake layer fouling. • High dosage aggravated fouling due to compact cake layer with low bio-activity. The gravity-driven membrane bioreactor (MBR)system is promising for decentralized sewage treatment because of its low energy consumption and maintenance requirements. However, the growing sludge not only increases membrane fouling, but also augments operational complexities (sludge discharge). We added the metabolic uncoupler 3,3′,4′,5-tetrachlorosalicylanilide (TCS) to the system to deal with the mentioned issues. Based on the results, TCS addition effectively decreased sludge ATP and sludge yield (reduced by 50%). Extracellular polymeric substances (EPS; proteins and polysaccharides) decreased with the addition of TCS and were transformed into dissolved soluble microbial products (SMPs) in the bulk solution, leading to the break of sludge flocs into small fragments. Permeability was increased by more than two times, reaching 60–70 L/m2/h bar when 10–30 mg/L TCS were added, because of the reduced suspended sludge and the formation of a thin cake layer with low EPS levels. Resistance analyses confirmed that appropriate dosages of TCS primarily decreased the cake layer and hydraulically reversible resistances. Permeability decreased at high dosage (50 mg/L) due to the release of excess sludge fragments and SMP into the supernatant, with a thin but more compact fouling layer with low bioactivity developing on the membrane surface, causing higher cake layer and pore blocking resistances. Our study provides a fundamental understanding of how a metabolic uncoupler affects the sludge and bio-fouling layers at different dosages, with practical relevance for in situ sludge reduction and membrane fouling alleviation in MBR systems.  相似文献   

17.
• ORP value from −278.71 to −379.80 mV showed indiscernible effects on methane yield. • Fe(II) and Fe(III) promoted more degradation of proteins and amino acids than Fe0. • The highest enrichment of Geobacter was noted in samples added with Fe0. • Cysteine was accumulated during iron enhanced anaerobic sludge digestion. • Both iron content and valence were important for methane production. This study compared effects of three different valent iron (Fe0, Fe(II) and Fe(III)) on enhanced anaerobic sludge digestion, focusing on the changes of oxidation reduction potential (ORP), dissolved organic nitrogen (DON), and microbial community. Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days (d), the maximum methane production rate of sludge samples dosed with respective Fe0, Fe(II) and Fe(III) at the same concentration showed indiscernible differences at each iron dose, regardless of the different iron valence. Moreover, their behavior in changes of ORP, DON and microbial community was different: (1) the addition of Fe0 made the ORP of sludge more negative, and the addition of Fe(II) and Fe(III) made the ORP of sludge less negative. However, whether being more or less negative, the changes of ORP may show unobservable effects on methane yield when it ranged from −278.71 to −379.80 mV; (2) the degradation of dissolved organic nitrogen, particularly proteins, was less efficient in sludge samples dosed with Fe0 compared with those dosed with Fe(II) and Fe(III) after an incubation period of 30 d. At the same dose of 160 mg/L iron, more cysteine was noted in sludge samples dosed with Fe(II) (30.74 mg/L) and Fe(III) (27.92 mg/L) compared with that dosed with Fe0 (21.75 mg/L); (3) Fe0 particularly promoted the enrichment of Geobacter, and it was 6 times higher than those in sludge samples dosed with Fe(II) and Fe(III) at the same dose of 160 mg/L iron.  相似文献   

18.
• Effects of metabolic uncouplers addition on sludge reduction were carried out. • TCS addition effectively inhibited ATP synthesis and reduced sludge yield. • The effluent quality such as TOC and ammonia deteriorated but not significantly. • Suitable dosage retarded biofouling during sludge water recovery by UF membrane. Energy uncoupling is often used for sludge reduction because it is easy to operate and does not require a significant amount of extra equipments (i.e. no additional tank required). However, over time the supernatant extracted using this method can deteriorate, ultimately requiring further treatment. The purpose of this study was to determine the effect of using a low-pressure ultrafiltration membrane process for sludge water recovery after the sludge had undergone an energy uncoupling treatment (using 3,3′,4′,5-tetrachlorosalicylanilide (TCS)). Energy uncoupling was found to break apart sludge floc by reducing extracellular polymeric substances (EPS) and adenosine triphosphate (ATP) content. Analysis of supernatant indicated that when energy uncoupling and membrane filtration were co-applied and the TCS dosage was below 30 mg/L, there was no significant deterioration in organic component removal. However, ammonia and phosphate concentrations were found to increase as the concentration of TCS added increased. Additionally, due to low sludge concentrations and EPS contents, addition of 30–60 mg/L TCS during sludge reduction increased the permeate flux (two times higher than the control) and decreased the hydraulic reversible and cake layer resistances. In contrast, high dosage of TCS aggravated membrane fouling by forming compact fouling layers. In general, this study found that the co-application of energy uncoupling and membrane filtration processes represents an effective alternative method for simultaneous sludge reduction and sludge supernatant recovery.  相似文献   

19.
Anaerobic biodegradation of trimethoprim (TMP) coupled with sulfate reduction. Demethylation of TMP is the first step in the acclimated microbial consortia. The potential degraders and fermenters were enriched in the acclimated consortia. Activated sludge and river sediment had similar core microbiomes. Trimethoprim (TMP) is an antibiotic frequently detected in various environments. Microorganisms are the main drivers of emerging antibiotic contaminant degradation in the environment. However, the feasibility and stability of the anaerobic biodegradation of TMP with sulfate as an electron acceptor remain poorly understood. Here, TMP-degrading microbial consortia were successfully enriched from municipal activated sludge (AS) and river sediment (RS) as the initial inoculums. The acclimated consortia were capable of transforming TMP through demethylation, and the hydroxyl-substituted demethylated product (4-desmethyl-TMP) was further degraded. The biodegradation of TMP followed a 3-parameter sigmoid kinetic model. The potential degraders (Acetobacterium, Desulfovibrio, Desulfobulbus, and unidentified Peptococcaceae) and fermenters (Lentimicrobium and Petrimonas) were significantly enriched in the acclimated consortia. The AS- and RS-acclimated TMP-degrading consortia had similar core microbiomes. The anaerobic biodegradation of TMP could be coupled with sulfate respiration, which gives new insights into the antibiotic fate in real environments and provides a new route for the bioremediation of antibiotic-contaminated environments.  相似文献   

20.
• Fungi enable the constant UASB operation even at OLR of 25.0 kg/(m3×d). • The COD removal of 85.9% and methane production of 5.6 m3/(m3×d) are achieved. • Fungi inhibit VFAs accumulation and favor EPS generation and sludge granulation. • Fungi enrich methanogenic archaea and promote methanogenic pathways. Anaerobic digestion is widely applied in organic wastewater treatment coupled with bioenergy production, and how to stabilize its work at the high organic loading rate (OLR) remains a challenge. Herein, we proposed a new strategy to address this issue via involving the synergetic role of the Aspergillus sydowii 8L-9-F02 immobilized beads (AEBs). A long-term (210-day) continuous-mode operation indicated that the upflow anaerobic sludge bed (UASB) reactor (R1, with AEBs added) could achieve the OLR as high as 25.0 kg/(m3×d), whereas the control reactor (R0, with AEBs free) could only tolerate the maximum OLR of 13.3 kg/(m3×d). Remarkably, much higher COD removal (85.9% vs 23.9%) and methane production (5.4 m3/(m3×d) vs 2.2 m3/(m3×d)) were achieved in R1 than R0 at the OLR of 25.0 kg/(m3×d). Such favorable effect results from the facts that fungi inhibit VFAs accumulation, favor the pH stabilization, promote the generation of more extracellular polymeric substance, and enhance the sludge granulation and settleability. Moreover, fungi may enhance the secretion of acetyl-coenzyme A, a key compound in converting organic matters to CO2. In addition, fungi are favorable to enrich methanogenic archaea even at high OLR, improving the activity of acetate kinase and coenzyme F420 for more efficient methanogenic pathway. This work may shed new light on how to achieve higher OLR and methane production in anaerobic digestion of wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号