首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 70 毫秒
1.
长江口及其邻近海域悬浮物浓度和浊度的对应关系   总被引:21,自引:0,他引:21  
长江三峡工程一期蓄水自2003年6月1日开始,到6月10日结束,为了研究长江三峡工程蓄水对长江口环境的影响,在2003年6月15日至6月24日期间组织了长江口及其邻近海域环境的综合调查.根据该次调查所取得的悬浮体浓度和浊度的实测资料,探讨了不同水体中两可能存在的相关性,以期达到根据易得的浊度数据获得更多悬浮体浓度分布规律的目的.同时,分析了两关系的主要影响因素和关系式的适用范围.结果表明:长江口及其邻近海域不同水体悬浮体浓度和浊度之间均存在有较好的相关性,即浓度和浊度之间存在对数线性关系。  相似文献   

2.
长江口海域悬浮物的分布时空变化特征   总被引:4,自引:0,他引:4  
本文以1986年冬季和夏季两个航次调查资料,研究了长江口吸其毗邻海域的枯丰水期的数百个海不悬浮物样品的成分和分布。悬浮颗粒物浓度变化范围,河口区,夏季为134.0-189.0mg’dm^3,冬季为71.6-299.0mg/dm^3,而海区,冬季为6.9-12.5display status  相似文献   

3.
长江口及其邻近海域赤潮时空分布研究   总被引:8,自引:8,他引:8  
收集了1972~2009年长江口及其邻近海域(29°25'~32°00'N、124°00'E以西)所记载的赤潮事件,基于GIS软件平台,系统分析赤潮的时空分布规律,并绘制长江口及邻近海域赤潮分布图.分析表明:①近40年来,长江口及邻近海域赤潮发生多达174次,暴发面积〉1 000 km2的有25次.赤潮发生核心区集中在...  相似文献   

4.
挥发性卤代烃(Volatile halocarbons,VHCs)是大气中重要的痕量温室气体,在全球变暖和大气化学中扮演着重要的角色.运用吹扫-捕集气相色谱法于2016年7月4—16日对长江口及其邻近海域6种常见的挥发性卤代烃(CFC-11、CFC-12、CH2Cl2、CCl_4、C_2Cl_4、CHBr3)的浓度进行了测定.同时,测定了大气中的CCl_4、CFC-11、CFC-12和C_2Cl_4浓度.结果表明,受陆源输入、水团及生物作用因素的影响,海水中6种VHCs的浓度分布总体呈现出近岸高、远海低的趋势.受地理位置和水文等条件影响,不同的VHCs垂直分布有所差别,但浓度的高值区出现在0~20 m水体中.相关性分析表明,CHBr3与Chl-a之间存在显著正相关,说明CHBr3分布受到浮游植物生物量的影响;CCl_4、C_2Cl_4与CFC-11显著正相关,推测三者拥有相似的来源.另外,分析结果显示,CHBr3与pH之间没有相关性.大气中除CFC-11外,CCl_4、CFC-12和C_2Cl_4的平均浓度均高于全球平均值.大气中4种VHCs浓度分布表现出近岸高、外海低的趋势.后向轨迹分析表明,近岸的陆源污染及大气的扩散输送是长江口及其附近海域上方大气VHCs的重要来源.采用双膜模型估算了卤代烃的海-气通量,结果表明,夏季长江口及其邻近海域是大气中CCl_4、C_2Cl_4、CHBr3、CH2Cl2的源.  相似文献   

5.
海洋是大气中一氧化碳(CO)的重要来源,河口区域在调节气候活性气体收支方面发挥着重要作用。本文旨在研究长江口作为典型河口在全球海洋CO生物地球化学循环中的地位,并进一步了解河口区域海水和大气中CO浓度的变化情况。本文基于2021年冬季和夏季在长江口及其邻近海域的现场调查,对该海域CO分布、海-气通量和微生物消耗速率进行了研究。结果表明,冬季和夏季调查海域大气中CO的体积分数平均值分别为(530.39±120.40)×10-9和(416.91±102.01)×10-9,大气中CO含量受人类活动影响较大;受光照强度和陆源输入有机物的影响,夏季表层海水中CO的浓度平均值[(4.52±2.13) nmol/L]显著高于冬季[(1.30±0.79) nmol/L];相应地,夏季海—气通量平均值[0.95μmol/(m2·d)]亦显著高于冬季[0.10μmol/(m2·d)]。冬季的微生物消耗速率常数(kbio)的平均值[(0.46±0.31)/h]明显高于夏季[(0.26±0.07)/h...  相似文献   

6.
长江口及邻近海域夏季浮游植物分布现状与变化趋势   总被引:2,自引:0,他引:2  
根据2000~2003年夏季4个航次的调查数据,对长江口及邻近海域浮游植物数量分布状况及变动趋势进行分析和探讨.结果表明:舟山渔场西部浮游植物平均细胞数最高(12 332.30×104/m3),长江口次之(3 961.38×104/m3),杭州湾水域最低(569.11×104/m3),长江口水域年间出现高值(1 000×104/m3)的稳定性明显高于舟山渔场和杭州湾;长江口(122°30′E以西)7月径流量变化是导致8月浮游植物总量年间变化的主要因素之一.浮游植物优势种群从单一种数量优势向多种群数量优势的方向发展,以往单峰型的季节变化和单一种主导浮游植物总数量分布的格局将有所改变.  相似文献   

7.
长江口及邻近海域赤潮藻种演替过程中营养盐特征   总被引:3,自引:0,他引:3  
根据2010年4~10月份四个航次典型断面的调查数据,分析了长江口及邻近海域赤潮爆发过程中藻种演替现象、营养盐含量及结构变化,并初步分析了营养盐特征对赤潮藻种演替的作用。结果表明:在4月、5月、7月三个航次"硅藻→甲藻→硅藻"的演替过程中,发现不同藻种对营养盐的需求不同,较高浓度的DIN、磷酸盐和硅酸盐以及低的DIN/P、Si/DIN、Si/P比值更有利于硅藻的生长,而甲藻在低浓度的DIN、磷酸盐和硅酸盐以及高的DIN/P、Si/DIN、Si/P比值条件下生长速度较快;至10月份,硅藻和甲藻赤潮结束,营养盐基本恢复至赤潮爆发前的状态;不同时期长江口及其邻近海域水体中营养盐的改变,使得竞争能力强的藻种逐渐成长为优势藻种,从而导致了藻种的季节演替现象。  相似文献   

8.
长江口营养盐浓度变化及分布特征   总被引:8,自引:1,他引:8       下载免费PDF全文
根据2003年11月(枯季)和2004年8月(洪季)对长江口的2次现场调查,分析探讨了长江口的营养盐浓度变化及分布特征.结果表明,长江口水体3种不同形态的溶解无机氮中,以NO3--N含量最高,洪、枯季分别占溶解态无机氮的92.8%~97.7%和84.3%~98.4%.洪季NO3--N和NH+-N含量高于枯季,洪季与枯季NO2--N含量接近.洪、枯季长江口ρ(PO43-P)平均值分别为0.014和0.016 mg/L,接近国家海水一类标准.洪、枯季N3--N和PO3-4P含量均是由长江口内向口外近海逐渐降低,而NH4+-N含量则表现出相反的空间分布规律,即口外高于口内.通过计算长江口营养盐比值发现,枯季长江口氮、磷供应充分,不存在磷受限的情况,而洪季长江口水体受到磷的限制.   相似文献   

9.
长江口及邻近水域油污染分布特征   总被引:6,自引:1,他引:6  
根据2 0 0 0~2 0 0 3年春夏季长江口及邻近海域海水及沉积物中油类的调查结果,分析海域油污染的分布特征,采用单项指数法评估调查海域的油污染程度。结果表明,调查水域海水中油含量分布范围为0 .0 11~0 .3 8mg/L ,平均含量为0 .0 89mg/L ;其中春季平均含量为0 .0 90mg/L ,夏季平均含量0 .0 79mg /L ;主要污染区域位于长江口近岸及舟山、大衢山等岛屿附近。2 0 0 3年沉积物油类年平均含量为92 .94×10 - 6 ,其中春季平均含量为86.85×10 - 6 ,夏季为95 .2 0×10 - 6 m ,长江河口水域平均含量最高。水体中油含量和沉积物总油含量之间不存在镜像关系。以《渔业水质标准》和《海洋沉积物质量》一类标准计算,调查区域水体单项指数大多高于1,平均值为1.73 ;沉积物单项指数都小于1,平均为0 .19;无论水体还是沉积物,均以长江河口水域的污染最为严重。  相似文献   

10.
2013~2015年,在长江口-杭州湾及其邻近海区采集表层底质样品112个,进行总有机碳(TOC)、总氮(TN)、有机碳同位素(δ13C)、有机氮同位素(δ15N)和C/N的测定,得到碳氮元素的空间分布特征;并与2006年的数据对比,观察TOC、TN和有机碳δ13C的空间变化。将研究区划分为北部的长江水下三角洲和南部的浙闽内陆架沉积区两部分,结果表明:TOC和TN在北部由陆向海先升高后降低,在浙闽内陆架沉积区表现为向海增加,并在122°~123°E范围内的29°N附近出现高值;有机碳δ13C由陆向海变轻,且在长江水下三角洲比浙闽内陆架沉积区要低,变化较南部慢;2006年和2015年的数据对比表明,近年来,TOC和TN降低,有机碳δ13C变轻,碳氮元素的空间分布更加均一,这些变化在123.5°E以西的长江口地区表现得尤为明显。  相似文献   

11.
三峡工程蓄水前后长江口水域营养盐结构及限制特征   总被引:7,自引:0,他引:7  
根据2002~2004年11月对长江口及其邻近海域的调查结果,比较了三峡工程蓄水前后该海域溶解态营养盐结构以及浮游植物生长潜在的营养盐限制状况,初步分析了导致蓄水前后营养盐结构及限制状况变化的可能原因.结果表明,蓄水后口门内N∶P和Si∶P呈上升的趋势,N∶P增加了40%以上,Si∶P上升了6%,而Si∶N降低了26%.蓄水后口门外营养盐结构的变化趋势与口门内相似,但N∶P升高更为显著,与蓄水前相比增加了2倍以上,但Si∶N降低了20%.该水域浮游植物生长潜在的磷限制在三峡蓄水后增强.具有磷限制特征的样品比例从蓄水前的28.6%增加到蓄水后的70%以上,表明该海域潜在的磷限制区域有扩大的趋势.尽管蓄水后Si∶N降低显著,但未导致该水域出现潜在的硅限制.  相似文献   

12.
三峡工程与三峡库区环境保护   总被引:1,自引:0,他引:1  
三峡工程是一项改善长江生态环境的工程。它一方面对库区乃至全国的经济发展有着重大的牵动作用,另一方面也将对三峡库区直至长江领域的生态环境产生广泛而深远的影响,从可持续发展思想的高度提出了实施三峡库区生态环境保护对策方略。  相似文献   

13.
庞重光  于炜  杨扬 《环境科学》2010,31(3):618-625
利用现场激光粒度仪(LISST-100X C型),在不扰动天然细颗粒泥沙絮凝体的情况下,于2008年7月在长江口海域测量了24个站位不同层次悬浮絮凝体的粒径分布和体积浓度.结合同步测得的海水温度、盐度和浊度数据,得出了长江口海域悬浮物的粒度特征并进行了成因分析.长江口观测海域悬浮物的平均中值粒径为4.69φ,粒级分布具有分选较差、峰态宽、近对称的特征.悬浮絮凝体的垂向平均体积含量随离岸距离的增加而显著降低,而中值粒径却具有增大的趋势;在31.0°N断面,平均中值粒径从11μm增加到了60μm.随着离岸距离的增加,细颗粒悬浮泥沙的含量显著降低,而一些粒径较大的生物体或大粒径絮凝体的含量相对增多,造成了中值粒径的明显增大.本次观测所得的有效密度在246~1 334 kg/m3之间,平均为613kg/m3.当悬浮物含量较高时,由于大絮凝体比小絮凝体的沉降速度快,大絮凝体有效密度小于小絮凝体,从而导致悬浮物的中值粒径随水深的增大而明显增大,絮凝体有效密度随水深的增加而减小;37和44站有效密度与中值粒径的相关系数均在0.9以上.  相似文献   

14.
利用三峡库区长江干流1998年-2010年水质监测数据,以1998年-2003年代表蓄水前,2004年-2010年代表蓄水后,对比分析蓄水前后主要污染物浓度变化情况,用Spearman秩相关系数法判断其变化趋势的显著性。分析可知,蓄水后氨氮、化学需氧量、总磷指标的平均浓度要低于蓄水前,氨氮、化学需氧量浓度变化幅度大于蓄水前,总磷浓度变化幅度小于蓄水前;Spearman秩相关系数计算结果表明,三峡水库常年回水区内的断面,污染物浓度多数呈下降趋势,但只有晒网坝和培石断面的氨氮指标浓度下降趋势具有显著意义。  相似文献   

15.
为深入研究河口近岸海域DMS(二甲基硫)的生物地球化学过程,于2014年2月(枯水季)和7月(丰水季)对长江口及附近海域表层海水中DMS及其前体物质DMSP(二甲巯基丙酸内盐)的浓度分布及影响因素进行了研究,测定了DMSPd(溶解态DMSP)的降解速率和DMS的生物生产与微生物消费速率,并估算了DMS的海-气通量.结果表明:①枯水季和丰水季c(DMS)、c(DMSPd)、c(DMSPp)(DMSPp为颗粒态DMSP)的平均值±标准偏差分别为(0.54±0.28)(2.04±1.32)(6.65±5.07)和(3.99±3.70)(5.57±4.72)(14.26±9.17)nmol/L,长江口海域丰水季生源硫化物的浓度明显高于枯水季.②枯水季和丰水季c(DMSPd)与ρ(Chla)均呈弱相关,说明浮游植物在控制长江口海域DMSP的生产分布中发挥重要作用.③枯水季和丰水季c(DMS)/ρ(Chla)的平均值±标准偏差分别为(2.62±3.28)和(4.60±7.49)mmol/g,表明丰水季DMS的高产藻种(甲藻)在浮游植物生物量中所占比例高于枯水季.④枯水季表层海水中DMSPd的降解速率和DMS的生物生产速率分别介于(2.84~30.53)和(0.52~2.19)nmol/(L·d)之间,平均值分别为14.55和1.30 nmol/(L·d),表明DMS并不是DMSPd的主要降解产物.⑤枯水季和丰水季DMS的海-气通量平均值±标准偏差分别为(0.36±0.32)和(2.17±2.98)μmol/(m2·d),而且丰水季的硫排放量明显高于枯水季,这主要与夏季较高的c(DMS)有关.研究显示,长江口海域生源硫化物的浓度变化及分布特征呈明显的季节性差异,河口近岸海域是海洋有机硫排放的重要区域.   相似文献   

16.
长江口邻近海域赤潮水体浮游植物光吸收特性分析   总被引:1,自引:0,他引:1  
刘洋洋  沈芳  李秀珍 《环境科学》2015,36(6):2019-2027
根据2013年8月对长江口邻近海域赤潮水体浮游植物优势物种及光吸收特性进行调查,在34个调查站位中,共10个站位发生赤潮,其中,6个站位发生硅藻赤潮,3个站位发生甲藻赤潮.赤潮水体和非赤潮水体浮游植物吸收系数变化很大,440 nm处吸收系数范围分别为0.199~0.832 m-1和0.012~0.109 m-1;而比吸收系数变化相对较小,440 nm处比吸收系数在赤潮和非赤潮水体的平均值分别为0.023 m2·mg-1和0.035 m2·mg-1.从赤潮水体向非赤潮水体过渡,大粒径浮游植物所占比例减小,小粒径浮游植物所占比例上升,打包效应减小,因而比吸收系数升高.浮游植物粒径指数的变化对440 nm和675nm处的比吸收系数变化的贡献可分别达到43%和25%.不同类型赤潮(如硅藻和甲藻赤潮)在浮游植物粒级结构接近的情况下吸收光谱仍具有明显差异,这是色素组成不同的结果.甲藻赤潮中硅甲藻黄素和叶绿素c2的浓度之和与叶绿素a浓度的比值大于硅藻赤潮,是甲藻在465 nm附近出现吸收肩峰的重要原因.  相似文献   

17.
长江口邻近海域沉积物中生物硅溶解行为研究   总被引:1,自引:1,他引:1  
吴彬  吕伟香  鲁超  刘素美 《环境科学》2014,35(3):908-914
对长江口邻近海域进行调查,分析沉积物中生物硅的空间分布特征,探讨影响生物硅溶解以及保存的因素.结果表明,生物硅含量的平面分布具有近岸高于远海的分布趋势,陆源输入、沉积速率以及水动力条件是影响生物硅在沉积物中埋藏的主要因素.生物硅溶解速率常数随空间以及深度无明显变化规律,间隙水中硅酸盐相对于生物硅溶解度的不饱和程度、有机外壳对生物硅的包裹以及间隙水中Al离子浓度等因素会影响生物硅的溶解进而会影响其在沉积物中的保存和间隙水中硅酸盐浓度的变化.  相似文献   

18.
长江口及其邻近水域溶解无机氮的分布变化特征   总被引:2,自引:0,他引:2  
根据2004年4个航次的调查资料,研究了长江口及其邻近水域溶解无机氮的分布变化特征。结果表明,高浓度溶解无机氮集中分布在河口附近。一般来讲,近岸硝酸盐浓度上层高于下层,远岸与之相反。由于生物和化学作用的影响,亚硝酸盐和铵盐垂直断面分布较为复杂。随着长江径流量的增加与减小、冲淡水势力范围的扩大与缩小,硝酸盐季节分布随之变化,然而,亚硝酸盐春季浓度较高,铵盐冬季浓度远大于其它季节。各月DIN/PO4-P比值远高于Redfield比值。与1985~1986年相比,20余年溶解无机氮增加了2.2倍,DIN/PO4-P比值升高了1.4倍,这主要取决于溶解无机氮浓度的增加。溶解无机氮在河口的转移除了生物活动的影响外,主要受海水稀释作用的控制。  相似文献   

19.
长江口宝山孔沉积物中多环芳烃的分布   总被引:8,自引:1,他引:8  
长江口宝山一个典型孔沉积物中多环芳烃(PAHs)研究表明:PAHs总量分布在(0.08~11.74)×10-6.总的和单个PAHs化合物随深度发生明显的变化,主要特征为亚表层含量最大,然后向表层以及随深度的增加而趋于降低.依据荧蒽/(荧蒽+芘)值以及2~3环与3~4环PAH化合物分布特点,显示出热解成因(主要为大气沉降)可能是孔沉积物,尤其是亚表面中PAHs的主要来源.但从甲基萘与萘的比率所显示的PAHs分布样式来看,孔剖面附近的污水排放也将可能是重要的石油成因的PAHs来源.文中提出,两种输入的叠加混合,是产生上述分布特征的主要原因.另外,河口及近岸沉积物及其水系统的物化条件、沉积速率、物质交换及生物扰动等也将影响PAHs在孔剖面中的分布和赋存.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号