首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine biofouling cause severe damage to all marine technologies. Indiscriminate use of toxic metallic antifouling (AF) chemicals (cuprous oxide and TBT) to control the biofouling in turn greatly affects the flora and fauna of the marine ecosystem. In search of environmentally safe and effective AF agents, six nontoxic AF candidates were studied against the spore attachment of Ulva fasciata. Spore attachment was inhibited at 100 microg of trans-cinnamic acid (TCA) and benzoic acid (BA). Sulfate-coumaric acid (SCA) had no significant effect on the spore attachment. The release rate of BA exhibited a constant release flow. Varied response of U. fasciata spores to AF chemicals and release rate to the surrounding medium are discussed.  相似文献   

2.
In aquatic environments, the biofouling process is assumed to initiate from the conditioning layer of absorbed organic carbon residues on wetted surfaces. Microfouling organisms attach to this conditioning layer, building up a biofilm on which further biofouling proceeds. In dolphins, biofouling reduces hydrodynamic efficiency and may negatively affect health if not managed. In the present study we examined the skin surface of the pilot whale (Globicephala melas). Employing cryo-scanning electron microscopic techniques combined with various sample preparations, the skin displayed an average nanorough surface characterized by a pattern of nanoridge-enclosed pores; the average pore size (approximately 0.20 µm2) was below the size of most marine biofouling organisms. Further, the implications of this type of surface to the self-cleaning abilities of the skin of pilot whales are discussed, based on reduced available space for biofouler attachment, the lack of any particular microniches as shelters for biofoulers, and the challenges of turbulent water flow and liquid-air interfaces during surfacing and jumping of the dolphin.  相似文献   

3.
Screening of test chemicals or formulations for antifouling (AF) activity is important to get first hand information on their nontoxic repelling activities. Especially spores of a fouling alga, Ulva pertusa were used in this study to test the AF efficiency of five organic chemicals. Coatings made with 100 microg cm2 of citral and eugenol significantly inhibited the spore attachment. A low concentration (1 microg cm2) of solanesol exhibited effective AF activity against spore attachment. Spore germination was sensitive to different AF candidates screened in this study. Based on the attachment and germination response of Ulva pertusa spores, AF efficiency of five organic AF candidates is discussed.  相似文献   

4.
Minimum effective release rate (MERR) of zosteric acid (ZA) was studied at Ford Island. At laboratory condition, spore attachment in Enteromorpha intestinalis was inhibited significantly at 28.2 microg cm2 of ZA. More than 95% reduction in spore attachment was achieved in Ulva fasciata at 2,000 microM of ZA through membrane diffusion system. At 40 cm depth level larval settlement was high with maximum number of Hydroides elegans settlement. The overall larval settlement was increased with increasing days of exposure. The MERR of 10 microg cm(-2) d(-1) ZA inhibited 50% of the larval settlement. However, the inhibition rate was not proportionate to the antifouling ZA concentration. Using MERR membrane diffusion system an effective antifouling strategy was suggested for Ford Island.  相似文献   

5.
An effective measure to cope with eutrophication of lakes is to remove nutrients that can cause algal blooming by taking advantage of natural water purification processes. Here the term “purification” is defined, in a wide sense, as the potential role of a water body to contribute to the reduction of pollutants and thus controlling eutrophication. Also regarded as a kind of ecological regulating services, biological purification involves various processes concerning seasonal nutrient fixation, such as uptake by aquatic macrophytes, biofouling onto foliage substrates, feeding by organisms in higher trophic level, and eternal loss or removal of substance from the water. In order to evaluate the water purification ability, a numerical lake ecosystem model highlighting the role of macrophyte colonies in the shore zone was developed and applied to Lakes Suwa, Kasumi and Biwa, as well as five small lakes attached to Lake Biwa.  相似文献   

6.
Rocky ocean bottoms are covered from time to time with small amounts of fine sediments. This material may interfere with the development of germling stages of Macrocystis pyrifera. Tests were performed by introducing sediments before and after spores were dispersed in culture dishes. 10 mg cm-2 of sediment, enough to occlude the surface, prevents spore attachment, greatly reducing the probability of survival. Smothering of established germlings was severe at 108 mg sediment cm-2. Water motion further reduced spore success where sediments were present, probably because of abrasive scour. Mechanisms of natural and human interference with M. pyrifera reproduction are suggested.  相似文献   

7.
• Bacteria could easily and quickly attached onto TEP to form protobiofilms. • TEP-protobiofilm facilitate the transport of bacteria to membrane surface. • More significant flux decline was observed in the presence of TEP-protobiofilms. • Membrane fouling shows higher sensitivity to protobiofilm not to bacteria level. Transparent exopolymer particles (TEPs) are a class of transparent gel-like polysaccharides, which have been widely detected in almost every kind of feed water to membrane systems, including freshwater, seawater and wastewater. Although TEP have been thought to be related to the membrane fouling, little information is currently available for their influential mechanisms and the pertinence to biofouling development. The present study, thus, aims to explore the impact of TEPs on biofouling development during ultrafiltration. TEP samples were inoculated with bacteria for several hours before filtration and the formation of “protobiofilm” (pre-colonized TEP by bacteria) was examined and its influence on biofouling was determined. It was observed that the bacteria can easily and quickly attach onto TEPs and form protobiofilms. Ultrafiltration experiments further revealed that TEP-protobiofilms served as carriers which facilitated and accelerated transport of bacteria to membrane surface, leading to rapid development of biofouling on the ultrafiltration membrane surfaces. Moreover, compared to the feed water containing independent bacteria and TEPs, more flux decline was observed with TEP-protobiofilms. Consequently, it appeared from this study that TEP-protobiofilms play a vital role in the development of membrane biofouling, but unfortunately, this phenomenon has been often overlooked in the literature. Obviously, these findings in turn may also challenge the current understanding of organic fouling and biofouling as membrane fouling caused by TEP-protobiofilm is a combination of both. It is expected that this study might promote further research in general membrane fouling mechanisms and the development of an effective mitigation strategy.  相似文献   

8.
Environmental impacts caused by tin and copper based commercial antifouling (AF) paints were proved to be detrimental to aquatic ecosystems. Therefore, a search of environmental friendly AF compounds to be used in marine paint to protect the surface of maritime developmental structures from the unwanted biofouling is a burning issue of the present time. Commercially available eight organic chemicals--allyl isothiocyanate, beta-myrecene, cis-3-hexenyl acetate, citral, ethyl heptanoate, eugenol, methyl caproate, and octyl alcohol were evaluated forAF activities using both laboratory and field assays. The test chemicals were found to repel the target motile marine bacteria--Alteromonas marina, Bacillus atrophaeus, Roseobactergallaeciensis and Shewanella oneidensis and motile spores of the green alga, Ulva pertusa. The bacterial and Ulva spore repulsion activities of the test chemicals were measured by chemotaxis and agar diffusion methods respectively interestingly these test chemicals were less toxic to the test fouling species. The toxicity of the test chemicals was measured by using antibiotic assay disks against the bacteria and motility test against Ulva spores. Moreover, in field assay, all test chemicals showed a perfect performance ofAF activity showing no fouling during the experimental period of one year Such results and commercial as well as technical feasibility of the test chemicals firmly showed the possibility of using as alternatives of the existing toxic AF agents.  相似文献   

9.
对某2种商品植物除臭剂(代号A和C)进行了NH3和H2S的去除效果实验,确定了其最佳的使用条件;并实验了植物提取液对城市垃圾中转站渗滤液和实际中转站中恶臭气体的处理效果。结果显示,终浓度为0.85 g/m3的植物提取液A对NH3和H2S的去除率最高可达39.9%和92.31%;在城市垃圾中转站试验中,1.02 g/m3的植物提取液A结合超声波雾化装置对NH3和H2S的去除率可达66.67%和96.67%。研究表明利用植物提取液可以有效降低城市垃圾中转站恶臭污染物浓度,而采用超声波雾化装置效果更好。  相似文献   

10.
Since the concept of the osmotic microbial fuel cell (OsMFC) was introduced in 2011, it has attracted growing interests for its potential applications in wastewater treatment and energy recovery. However, forward osmosis (FO) membrane fouling resulting in a severe water flux decline remains a main obstacle. Until now, the fouling mechanisms of FO membrane especially the development of biofouling layer in the OsMFC are not yet clear. Here, the fouling behavior of FO membrane in OsMFCs was systematically investigated. The results indicated that a thick fouling layer including biofouling and inorganic fouling was existed on the FO membrane surface. Compared to the inorganic fouling, the biofouling played a more important role in the development of the fouling layer. Further analyses by the confocal laser scanning microscopy (CLSM) implied that the growth of biofouling layer on the FO membrane surface in the OsMFC could be divided into three stages. Initially, microorganisms associated with ß-D-glucopyranose polysaccharides were deposited on the FO membrane surface. After that, the microorganisms grew into a biofilm caused a quick decrease of water flux. Subsequently, some of microorganisms were dead due to lack of nutrient source, in the meantime, polysaccharide and proteins in the biofouling layer were decomposed as nutrient source, thus leading to a slow development of the biofouling layer. Moreover, the microorganisms played a significant role in the formation and development of the biofouling layer, and further studies are needed to mitigate the deposition of microorganisms on FO membrane surfaces in OsMFCs.
  相似文献   

11.
Environmental Chemistry Letters - There is increasing concern about contamination by surfactants that are used to extract organic pollutants during remediation of polluted soils and aquifers. For...  相似文献   

12.
Lasiodiplodia theobromae, a common tea (Camellia sinensis) pathogen, usually does not sporulate or sporulates poorly in common media, which makes spore production difficult. In this study the effects of culture media, carbon source, nitrogen source, temperature, pH and light on mycelial growth and sporulation were evaluated. Among several carbon sources tested, glucose and sucrose were found superior for growth. Potassium nitrate supplemented media showed maximum growth amongst the tested inorganic nitrogen sources while peptone produced maximum growth among the tested organic nitrogen sources. Tea root extract supplemented potato dextrose agar medium was found to be the most suitable for mycelial growth and sporulation of L. theobromae. The fungus grow at temperatures ranging from 40 to 36 degrees C, with optimum growth at 28 degrees C and no growth was noted at 40 degrees C. There was no significant effect of different light period on growth of L. theobromae, but light enhanced sporulation. The fungus grow at pH 3.0-8.0 and optimum growth was observed at pH 6.0. Tea root extract supplemented potato dextrose agar medium with pH 6.0 was the most suitable for production of conidia of L. theobromae at 28 degrees C. Hence this media may be recommended for inoculum production for further studies.  相似文献   

13.
A spore germination-based concept and its transformation into a field level prototype for monitoring aflatoxin M1 (AFM1) in milk was developed. Initially, 15 strains of Bacillus spp. procured from different culture collection were screened for AFM1 sensitivity using spot assay and marker strain showing inhibition at 0.5 ppb was selected based upon maximum zone of inhibition. The selected strain B. megaterium 2949 was further screened for different enzymes activities and subsequently its spores were produced to an extent of 73.13% ± 3.197% in newly developed sporulation medium containing beef extract (0.0075% ± 0.0004%), yeast extract (0.015% ± 0.001%), peptone (0.0375% ± 0.0016%), and sodium chloride (0.0375% ± 0.0018%). A spore germination-based concept/ assay was optimized by immobilizing spores in eppendorf with pretreated milk (80°C/15 min) containing germinant and chromogenic substrate followed by incubation at 37°C. The appearance of sky blue color within real time of 45 min indicated spores germination and release of specific marker enzyme such as acetyl esterase and its specific action on chromogenic substrate which demonstrates absence of AFM1 in milk. However, if there was no color change, presence of AFM1 at 0.5 ppb MRL was denoted by Codex. The developed concept on AFM1 detection was validated and a correlation of 0.97 was established with AOAC approved Charm 6602 and ELISA at Codex MRL with minimal false positive and negative results. The cost effective test has potential application in dairy farms, manufacturing, and R&D units for routine monitoring of AFM1 in milk.  相似文献   

14.
Although the frequency and magnitude of sedimentation often varies across coastal landscapes creating patches with different mean sediment loads, duration of sedimentation and rates of sediment resuspension, few studies have documented the emergent effects of spatio-temporal variability in sedimentation. Here, we conducted two laboratory experiments to evaluate such effects on the establishment of Macrocystis pyrifera and Undaria pinnatifida spores. In the first experiment, spore establishment was significantly affected by sediment load (the effective dose required for a 40 % reduction in establishment ranged between 16 and 60 mg sediment l?1) and sediment regime (relative sedimentation occurring before spore settlement, ~3 times more sediment was required for 20 % reduction in spore establishment when sedimentation occurred after spore settlement). The second experiment demonstrated that the effects of sediment depended on sediment load (spore establishment was 2–4 times greater when sediment load was 200 mg l?1 relative to 400 mg l?1), variability in sedimentation (spore establishment was 1.36 times greater with variable than fixed sediment loads), repeated pulses of sedimentation (pulsed sedimentation decreased spore establishment by 59–91 % relative to a single sedimentation event) and timing of sedimentation relative to spore settlement (sedimentation before spore settlement decreased establishment by 51–95 % relative to sedimentation after spore settlement). These results have important implications for ecologists and resource managers attempting to predict the consequences of sedimentation, suggesting that it is not only important to consider sediment load, but also fine-scale temporal variability in sedimentation relative to key life-history events of the impacted organisms.  相似文献   

15.
Agricultural practices such as harvesting of crops cause the pathogens to disseminate in abundance and may cause diseases, like skin and respiratory allergies in an epidemic form. Also the farm workers were likely to be exposed repeatedly to high doses of fungal spore allergens from crop harvesting operations. At Srikakulam, located in North Coastal Andhra Pradesh, India, the major crops grown include rice and sugarcane. As part of a major study on the airspora of Srikakulam the effect of harvesting of these two crops on aerial spore concentrations was studied through rotorod trappings. The results showed an enormous increase in the spore load not only of the fungi pathogenic to the crop but also saprophytic fungi while the crop was harvested. The increase in the pathogenic fungal spores was large as evidenced by the increase of the rice crop pathogens as Trichoconis padwickii, Ustilaginoidea virens, Cochilobolus oryzae etc.  相似文献   

16.
O. Oku  A. Kamatani 《Marine Biology》1997,127(3):515-520
The marine planktonic diatom Chaetoceros anastomosans, which was isolated from Sagami Bay, was used for a study of resting spore formation mechanisms in batch culture experiments. Vegetative cells could grow at salinities ranging from 20.7 to 45.5‰, and resting spore formation was enhanced significantly in nitrate-depleted, high salinity media (40.0 to 45.5‰). The rate of resting spore formation (1.9 d−1) was comparable to the specific growth rate (1.8 d−1) of vegetative cells in the exponential growth phase in normal salinity medium. The size of resting spores formed under high salinity conditions was smaller than that of spores formed in normal salinity media. Unlike vegetative cells, resting spores seemed to possess some mechanisms to survive over a wider range of salinities by resisting bacterial attacks on their cell walls. Received: 4 August 1996 / Accepted: 27 August 1996  相似文献   

17.
The flow of particulate nitrogen from marine net pen fish farm effluents to the surrounding biofouling community was quantified by means of stable isotopes of nitrogen. Plastic mesh substrates were deployed at 8 m depth near a sea bream fish farm and at a nearby reference site in the northern Gulf of Aqaba (Red Sea) to assess whether natural fouling organisms could sequester substantial quantities of farm-derived particulate nitrogen waste. A mixing equation, incorporating differences in nitrogen stable isotope composition, δ15N, between particulate organic matter (“source”) and fouling organisms (“sink”) at the fish farm and reference site, was used to estimate the amount of farm-derived nitrogen that was incorporated by the fouling community. Among the conspicuous fouling organisms examined, sponges, tunicates and polychaetes showed greatest uptake of fish farm N, where the mean fractions of farm-derived N estimated over the 2-year period of observation were 19±7, 22±6 and 31±8% of total organisms’ N content, respectively, with maximal recorded seasonal values of 68, 85 and 57%, respectively. Mean N uptake by mixed fouling communities (conspicuous + cryptic organisms) was as much as fivefold higher than that calculated for the sum of conspicuous taxa, suggesting that the retention efficiency is greater in mixed than in mono-specific biofouling communities.  相似文献   

18.
Cell biosensors are currently emerging as novel, sensitive techniques to monitor the toxicity of environmental pollutants. Here, we have developed electric cell-substrate impedance sensing (ECIS) for on-line monitoring of the behavior of insect cells. Cells were cultured on a microarray of eight small gold electrodes, deposited on the bottom of tissue culture wells. Upon inoculation, cells showed a tendency to drift downward and attached to the gold surface precoated with the protein Concanavalin A to accelerate the cell attachment. The impedance increased because the cells acted as insulating particles to restrict the current flow. The resulting impedance, a coordination of many biological reactions within the cell, was continuously monitored in real-time to reveal information about cell spreading and micromotion. As the cell behavior was sensitive to external chemicals, the applicability of ECIS for inhibition assays was demonstrated with HgCl2, 2,4,6-trinitrotoluene (TNT), 2-amino 4,6-dinitrotoluene (2-ADNT) and 1,3,5-trinitrobenzene (TNB). Electronic Publication  相似文献   

19.
In the Brazilian coast, high numbers of the small brittle star Ophiactis savignyi usually live associated with the sponge Geodia corticostylifera (Demospongiae, Geodidae), but not with other sympatric sponge species. In order to check whether this association was related only with the physical shelter provided by the sponge body or was chemically mediated, the crude organic extract of G. corticostylifera was added to sponge mimics made of phytagel and spongin skeleton. Control and treated mimics were simultaneously offered to previously sponge-associated O. savignyi in both static seawater and flow-through laboratory experiments. Ophiuroids were allowed to move towards the preferred mimic. The defensive properties of the sponge extract against fish predation and fouling were also evaluated. Chemotaxis assays showed that symbiotic ophiuroids were able to chemically recognize its host sponge, moving significantly more towards mimics containing G. corticostylifera extract. Chemical deterrence assays showed that the natural concentration of the extract of this sponge was also able to inhibit generalist fish predation on field experiments and the attachment of the common mussel Perna perna in laboratory assays. These results indicate that the crude extract of G. corticostylifera plays multiple functions in the marine environment, presumably being responsible for a closer association of this sponge with O. savignyi, providing protection for this ophiuroid and inhibition of epibionts on itself.  相似文献   

20.
The pHstat-procedure is a method to examine the pH-dependent mobilisation of heavy metals and other pollutants from solids. The metals in such extracts are usually determined by atomic absorption (AAS) or by emission spectrometry (ICP-OES). The obtained values present the total amount of mobilized metals. A statement concerning the effect-oriented true toxicity of the extract, respective of the examined solid, is not possible. A combined effect-oriented procedure, such as a the bioaluminescence-inhibition test with luminescence bacteria enables a precise statement about the ecotoxicity of solids. A variation of the inhibition test (addition of EDTA) indicates the main binding forms of heavy metals and the part of inhibition caused by organic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号