首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changing climate and land cover are expected to impact flood hydrology in the Delaware River Basin over the 21st Century. HEC‐HMS models (U.S. Army Corps of Engineers Hydrologic Engineering Center‐Hydrologic Modeling System) were developed for five case study watersheds selected to represent a range of scale, soil types, climate, and land cover. Model results indicate that climate change alone could affect peak flood discharges by ?6% to +58% a wide range that reflects regional variation in projected rainfall and snowmelt and local watershed conditions. Land cover changes could increase peak flood discharges up to 10% in four of the five watersheds. In those watersheds, the combination of climate and land cover change increase modeled peak flood discharges by up to 66% and runoff volumes by up to 44%. Precipitation projections are a key source of uncertainty, but there is a high likelihood of greater precipitation falling on a more urbanized landscape that produces larger floods. The influence of climate and land cover changes on flood hydrology for the modeled watersheds varies according to future time period, climate scenario, watershed land cover and soil conditions, and flood frequency. The impacts of climate change alone are typically greater than land cover change but there is substantial geographic variation, with urbanization the greater influence on some small, developing watersheds.  相似文献   

2.
ABSTRACT: An evaluation of flood frequency estimates simulated from a rainfall/runoff model is based on (1) computation of the equivalent years of record for regional estimating equations based on 50 small stream sites in Oklahoma and (2) computation of the bias for synthetic flood estimates as compared to observed estimates at 97 small stream sites with at least 20 years of record in eight eastern states. Because of the high intercorrelation of synthetic flood estimates between watersheds, little or no regional (spatial) information may be added to the network as a result of the modeling activity. The equivalent years of record for the regional estimating equations based totally on synthetic flood discharges is shown to be considerably less than the length of rainfall record used to simulate the runoff. Furthermore, the flood estimates from the rainfall/runoff model consistently underestimate the flood discharges based on observed record, particularly for the larger floods. Depending on the way bias is computed, the synthetic estimate of the 100-year flood discharge varies from 11 to 29 percent less than the value based on observed record. In addition, the correlation between observed and synthetic flood frequency estimates at the same site is also investigated. The degree of correlation between these estimates appears to vary with recurrence interval. Unless the correlation between these two estimates is known, it is not possible to compute a weighted estimate with minimum variance.  相似文献   

3.
Vogel, Richard M., Chad Yaindl, and Meghan Walter, 2011. Nonstationarity: Flood Magnification and Recurrence Reduction Factors in the United States. Journal of the American Water Resources Association (JAWRA) 47(3):464‐474. DOI: 10.1111/j.1752‐1688.2011.00541.x Abstract: It may no longer be reasonable to model streamflow as a stationary process, yet nearly all existing water resource planning methods assume that historical streamflows will remain unchanged in the future. In the few instances when trends in extreme events have been considered, most recent work has focused on the influence of climate change, alone. This study takes a different approach by exploring trends in floods in watersheds which are subject to a very broad range of anthropogenic influences, not limited to climate change. A simple statistical model is developed which can both mimic observed flood trends as well as the frequency of floods in a nonstationary world. This model is used to explore a range of flood planning issues in a nonstationary world. A decadal flood magnification factor is defined as the ratio of the T‐year flood in a decade to the T‐year flood today. Using historical flood data across the United States we obtain flood magnification factors in excess of 2‐5 for many regions of the United States, particularly those regions with higher population densities. Similarly, we compute recurrence reduction factors which indicate that what is now considered the 100‐year flood, may become much more common in many watersheds. Nonstationarity in floods can result from a variety of anthropogenic processes including changes in land use, climate, and water use, with likely interactions among those processes making it very difficult to attribute trends to a particular cause.  相似文献   

4.
Regional procedures to estimate flood magnitudes for ungaged watersheds typically ignore available site-specific historic flood information such as high water marks and the corresponding flow estimates, otherwise referred to as limited site-specific historic (LSSH) flood data. A procedure to construct flood frequency curves on the basis of LSSH flood observations is presented. Simple inverse variance weighting is employed to systematically combine flood estimates obtained from the LSSH data base with those from a regional procedure to obtain improved estimtes of flood peaks on the ungaged watershed. For the region studied, the variance weighted estimates of flow had a lower logarithmic standard error than either the regional or the LSSH flow estimates, when compared to the estimates determined by three standard distributions for gaged watersheds investigated in the development of the methodology. Use of the simple inverse variance weighting procedure is recommended when “reliable” estimates of LSSH floods for the ungaged site are available.  相似文献   

5.
This paper describes the results of a study of hydrologic factors affecting floods from humid region in northeastern Ohio. Statistical multiple correlation analysis was used to relate floods to hydrologic and basin characteristics. Results of the study emphasize that the characteristics of floods from small and large watersheds are so significantly different that the two problems cannot be combined into one solution. The studies show that the most important hydrologic characteristics in large watersheds were: drainage area size and main channel slope. For small watersheds the most important hydrologic characteristics were: drainage area size, rainfall intensity and soil index. For watershed effect by reservoir storage it was found that: (1) small drainage areas are relatively more affected by storage than large drainage areas; (2) storage of less than 25 acre feet per square mile will not have significant effect on the mean annual flood (for drainage area above 70 square miles).  相似文献   

6.
ABSTRACT: Twenty-two gaging stations were selected for developing a regional flood frequency curve for small (area less than 2 square miles) watersheds in southern Illinois. Five probability functions were compared, and the extreme value type I function was selected to develop the regional flood curve. The curve was generated with the index flood method and also another empirical method that related the function parameters to the watershed area. Estimated peak discharges with various return periods were compared with the results obtained from multiple regression analysis.  相似文献   

7.
ABSTRACT: The literature abounds with procedures for estimating the magnitude and frequency of floods at ungaged locations. Unfortunately, the large number of available procedures creates an awesome task for potential users of sorting and selecting a method for immediate use. The objectives of this paper are to present (1) criteria that are necessary to evaluate the usefulness of hydrologic procedures, (2) to present a classification system for categorizing the multitude of procedures that are available, (3) to summarize the findings of the literature review, and (4) to make recommendations on reporting of flood frequency estimation procedures on ungaged watersheds.  相似文献   

8.
Remote sensing has emerged as one of the major techniques for the analysis and delineation of large floods. This analysis can provide data invaluable for the hydrological management of large river systems. A need for information on the extent of floodplain inundation for the lower reaches of the largest river in the UK was met by a search through Landsat images of floods and the analysis of the best example recorded. Automated classification of the Landsat imagery of this flood on the river Severn in 1977 was used to provide estimates of the extent and spatial distribution of inundation. Flood images were generated using the Plessey IDP 3000 image processor, and the maps derived accorded well with aerial photography and qualitative flood information. Three distinct floodplain environments were delineated and flood images produced by different spectral bands compared. Specific questions prompted by flood hazard management and concerning the processes and extent of flooding were answered by the Landsat data analysis. Management of the flood risk of large rivers is expensive and remote sensing data is a relatively cheap and effective way of monitoring control works and providing data for the prediction of the effects of future hydrological works. Remote sensing is a practical way in which spatial information concerning the behavior of large dynamic systems can be obtained both quickly and relatively cheaply.  相似文献   

9.
Probability distributions that model the return periods of flood characteristics derived from partial duration series are proposed and tested in the Fraser River catchment of British Columbia. Theoretical distributions describing the magnitude, duration, frequency and timing of floods are found to provide a goof fit to the observed data. The five estimated parameters summarizing the flood characteristics of each basin are entered into a discriminant analysis procedure to establish flood regions. Three regions were identified, each displaying flood behavior closely related to the physical conditions of the catchment. Within each region, regression equations are obtained between parameter values and basin climatic and physiographic variables. These equations provide a satisfactory prediction of flood parameters and this allows the estimation of a comprehensive set of flood characteristics for areas with sparse hydrologic information.  相似文献   

10.
ABSTRACT: A climate factor, CT, (T = 2–, 25-, and 100-year recurrence intervals) that delineates regional trends in small-basin flood frequency was derived using data from 71 long-term rainfall record sites. Values of CT at these sites were developed by a regression analysis that related rainfall-runoff model estimates of T-year floods to a sample set of 50 model calibrations. CT was regionalized via kriging to develop maps depicting its geographic variation for a large part of the United States east of the 105th meridian. Kriged estimates of CT and basin-runoff characteristics were used to compute regionalized T-year floods for 200 small drainage basins. Observed T-year flood estimates also were developed for these sites. Regionalized floods are shown to account for a large percentage of the variability in observed flood estimates with coefficients of determination ranging from 0.89 for 2-year floods to 0.82 for 100-year floods. The relative importance of the factors comprising regionalized flood estimates is evaluated in terms of scale (size of drainage area), basin-runoff characteristics (rainfall. runoff model parameters), and climate (CT).  相似文献   

11.
Abstract: While transboundary flood events have become more frequent on a global scale the past two decades, they appear to be overlooked in the international river basin (IRB) cooperation and management arena. The present study therefore combined geopolitical measures with biophysical and socioeconomic variables in an attempt to identify the IRBs with adequate institutional capacity for management of transboundary floods. It also classified basins that would possibly benefit from enlarging the institutional capacity related to transboundary floods. Of the 279 known IRBs, only 78 were represented by a transboundary rivers institution. A mere eight of the 153 identified institutions had transboundary flooding listed as an issue in their mandate. Overall, 43 basins, where transboundary floods were frequent during the period 1985‐2005, had no institutional capacity for IRBs. The average death and displacement tolls were found to be lower in the 37 basins with institutional capacity, even though these basins experienced twice as much transboundary floods with significant higher magnitudes than those in basins without institutional capacity. Overall, the results suggested that institutional capacity plays a role in the reduction of flood‐related casualties and affected individuals. River basins such as the Juba‐Shibeli, Han, Kura‐Araks, Ma, Maritsa, Po, Coco/Segovia, Grijalva, Artibonite, Changuinola, Coatan Achute, and Orinoco experienced more than one transboundary river flood, but have not yet set up any institutions for such events, or signed any appropriate treaties focused on floods. These basins were therefore recommended to consider focusing attention on this apparent lack of institutional capacity when it comes to managing transboundary flood events.  相似文献   

12.
ABSTRACT: Some 96 flood events larger than the mean annual flood from 16 watersheds in the Commonwealth of Pennsylvania were used to derive unit hydrographs by the least-squares method. Analyses of the unit hydrographs were conducted to ascertain their response to watershed parameters, climatic and storm variables and locations within different hydrologic regions. Significant differences both within and among watersheds led to the formulation and testing of hypotheses stating that differences among watersheds are caused by physiographic differences while differences within watersheds result from climatic and storm differences. The analysis showed, that while many watersheds parameters strongly influence the shape of the unit hydrograph, only the storm variables duration and volume of precipitation excess produce significant differences. Seasonal differences were apparent but not proven statistically significant.  相似文献   

13.
ABSTRACT: Many practices followed uniformly nationwide in the federal flood control and floodplain management programs are inappropriate or even counter productive in the arid Utah climate. An analysis of the 130-year Utah flood history, the structural and nonstructural flood programs in the state, and local perceptions obtained by field visits and interviews in 35 Utah communities revealed a number of such inefficiencies. Since flood flows dissipate quickly when they emerge from mountain watersheds onto desert lowlands, risks are concentrated near the apex of alluvial fans, include hazard from mud as well as water flow, and are compounded by canal interception of flood waters. Because of variation in the area flooded from one event to the next, floodplain mapping has tended to show risks too high in mapped areas and too low outside. Traditional channelization carries floods downstream past where they would dissipate naturally. The federal government needs to become more active in developing better flood hazard delineation and structural and nonstructural designs for arid areas. State government can help by providing a forum where communities can exchange experiences, reviewing structural designs prepared by local government, and providing local communities with technical expertise for dealing with federal agencies.  相似文献   

14.
ABSTRACT: The dynamic relationship between stage and discharge which is unique to a particular flood for a selected station along the river can be determined via a mathematical model based on the complete one-dimensional equations of unsteady flow, i.e., the equations for the conservation of mass and momentum of the flood wave, and the Manning equation which accounts for energy losses. By assuming the bulk of the flood wave moves as a kinematic wave, the need for spatial resolution of the flood can be eliminated, and only the time variation of either the discharge or stage at the selected station is necessary for the computation of the other. The mathematical model can be used in river forecasting to convert the forecast discharge hydrograph into a stage hydrograph which properly reflects the unique dynamic stage-discharge relationship produced by the variable energy slope of the flood discharge. The model can be used also in stream gaging to convert a recorded stage hydrograph into a discharge hydrograph which properly accounts for the effects of unsteady flow. The model is applied to several observed floods at selected stations along the Lower Mississippi, Red, and Atchafalaya Rivers. The root mean square errors between observed and computed discharges are in the range of 3 to 7 percent, values well within the accuracy of the observations. A simple, easily-applied graphical procedure is also provided for estimating the magnitude of the effect of the unsteady flow on stage-discharge ratings. As a general rule, the dynamic effect may be significant if the channel bottom slope is less than 0.001 ft/ft (about 5 ft/mi) when the rate of change of stage is greater than about 0.10 ft/hr.  相似文献   

15.
Does place attachment and the consequent emotional connections and ties that people have with environments affect their preparedness for natural disasters, such as floods? This study took up this research question for the understudied geographical region of Orissa, India. In particular, investigation focused on three kinds of place attachment, viz. economic, genealogical, and religious. Contextualized scales for place attachment and flood preparedness were developed for a survey. Data were collected from 300 residents in flood prone areas. Validity and reliability of the scales were established. Overall, place attachment was found to significantly influence flood preparedness. Hierarchical regression analysis was performed to determine whether the three factors of place attachment influence flood preparedness. Controlling for confounding effects of age and family type, regression analysis revealed that people having genealogical and economic place attachment prepared for floods, but those with religious place attachment did not prepare for floods. The implications of these findings for future studies are described.  相似文献   

16.
Extreme climate events, floods, and drought, cause huge impact on daily lives. In order to produce society resilient to extreme events, it is necessary to assess the impact of frequent and high intensity storm events on design parameters. This article describes a methodology to develop future peak “design discharges” throughout the United States that can be used as a guidance to map future floodplains. In order to develop a lower and upper limit for anticipated peak flow discharges, two future growth scenarios — Representative Concentration Pathways (RCPs)‐RCP 2.6 and 8.5 were identified as the weak and strong climate scenario respectively based on the output from the global climate models. The Generalized Least Square technique in United States Geological Survey's Weighted Multiple Regression (WREG) program was used to develop regression equations that relate peak discharges to basin and climate parameters of the contributing watershed. The design discharges reflect the most recent climate model results. Number of frost days, heavy rainfall days, high temperature days, and snow depth were found to be the common extreme climate parameters influencing the regression equations. This methodology can be extended to other flood frequency events if rainfall data is available. The future discharges can be utilized in hydraulics models to estimate floodplains that can assist in resilient infrastructure planning and outline climate change adaptation strategies.  相似文献   

17.
Abstract: A mix of causative mechanisms may be responsible for flood at a site. Floods may be caused because of extreme rainfall or rain on other rainfall events. The statistical attributes of these events differ according to the watershed characteristics and the causes. Traditional methods of flood frequency analysis are only adequate for specific situations. Also, to address the uncertainty of flood frequency estimates for hydraulic structures, a series of probabilistic analyses of rainfall‐runoff and flow routing models, and their associated inputs, are used. This is a complex problem in that the probability distributions of multiple independent and derived random variables need to be estimated to evaluate the probability of floods. Therefore, the objectives of this study were to develop a flood frequency curve derivation method driven by multiple random variables and to develop a tool that can consider the uncertainties of design floods. This study focuses on developing a flood frequency curve based on nonparametric statistical methods for the estimation of probabilities of rare floods that are more appropriate in Korea. To derive the frequency curve, rainfall generation using the nonparametric kernel density estimation approach is proposed. Many flood events are simulated by nonparametric Monte Carlo simulations coupled with the center Latin hypercube sampling method to estimate the associated uncertainty. This study applies the methods described to a Korean watershed. The results provide higher physical appropriateness and reasonable estimates of design flood.  相似文献   

18.
ABSTRACT: The aim of this paper is to compare two views of flood management and thus add to the present thinking of living with floods as opposed to the traditional approach of flood control. The traditional pathway has widely been adopted in developed countries and aims to control floodwaters by means of dams and dikes. The alternative pathway tends towards a policy whereby society lives with the floods by being prepared and having the right damage reduction measures in place. In this paper two pathways are tentatively compared for the Lower Incomati Basin, Mozambique. In the design cultural theory is considered, as is how the design of each path may look according to different management perspectives. The Lower Incomati Basin provides an interesting case study as it is in a relatively undeveloped state. Hence, it is an ideal area for conducting research into the application of alternative flood management strategies. The preliminary results suggest that both pathways are feasible. However, considering recent hydrological extremes such as the 2000 floods, the resilient pathway may ultimately be a more appealing flood management strategy.  相似文献   

19.
Major coastal flooding events over the last decade have led decision makers in the United States to favor structural engineering solutions as a means to protect vulnerable coastal communities from the adverse impacts of future storms. While a resistance‐based approach to flood mitigation involving large‐scale construction works may be a central component of a regional flood risk reduction strategy, it is equally important to consider the role of land use and land cover (LULC) patterns in protecting communities from floods. To date, little observational research has been conducted to quantify the effects of various LULC configurations on the amount of property damage occurring across coastal regions over time. In response, we statistically examine the impacts of LULC on observed flood damage across 2,692 watersheds bordering the Gulf of Mexico. Specifically, we analyze statistical linear regression models to isolate the influence of multiple LULC categories on over 372,000 insured flood losses claimed under the National Flood Insurance Program per year from 2001 to 2008. Results indicate that percent increase in palustrine wetlands is the equivalent to, on average, a $13,975 reduction in insured flood losses per year, per watershed. These and other results provide important insights to policy makers on how protecting specific types of LULC can help reduce adverse impacts to local communities.  相似文献   

20.
ABSTRACT: In current hydrologic practice flood frequency estimates are usually based upon either the annual or the partial duration series of floods. Recurrence intervals generated by each series are not equivalent, however, and conversion of recurrence intervals from one series to the other is usually achieved by reference to a mathematical function developed by Langbein in 1949. Data collected on the Murrumbidgee River in New South Wales suggest, however, that the Langbein conversion function does not always provide a reliable means of comparing recurrence intervals. For discharges more frequent than the three year annual flood the Langbein function understates the discrepancy between the two sets of recurrence interval by approximately 35 percent. Langbein's own North American data appear to be consistent with those collected on the Murrumbidgee River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号