首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对杭埠-丰乐河12个采样点的表层沉积物中16种优控多环芳烃(PAHs)的含量进行了测定.结果表明:16种PAHs均被普遍检出,总含量(∑PAHs)范围为71.3±15—3372±402 ng·g~(-1)干重(dw),平均值为938 ng·g~(-1)(dw),与国内主要河流相比其浓度处于中等水平.底泥中多环芳烃组成以4环和5环为主,共占∑PAHs的81%,其中,二苯并[a.h]蒽(DBA)浓度最高,平均浓度为254 ng·g~(-1).底泥总有机碳(TOC)与∑PAHs之间有良好线性关系.利用特征比值法和主成分分析探讨了PAHs的可能来源,结果显示,杭埠-丰乐河底泥中PAHs主要来自于流域周边居民生物质、煤燃烧及汽车燃油污染.利用沉积物质量基准法和苯并[a]芘毒性当量(TEQBa P)法分别评价了杭埠-丰乐河沉积物PAHs的生态风险和致癌风险,发现部分采样点某些多环芳烃含量超过了效应区间低值(ERL),具有潜在的生态风险;沉积物中TEQBa P均值高达343 ng·g~(-1),具有相当高的致癌风险.  相似文献   

2.
在北京城区四环以内采集了33个冬季道路沉积物样品,分析其中多环芳烃(PAHs)的含量、分布特征、来源和生态风险.结果表明,16种多环芳烃(PAHs)∑16PAHs的浓度范围为931.0—2668.7 ng·g~(-1)干重,平均浓度为1602.4 ng·g~(-1)干重,污染物的组成以4环和3环PAHs为主.通过LMW/HMW(低分子量与高分子量PAHs的比值)法、特征比值法和主成分分析法得出,道路沉积物中PAHs主要来自于煤、化石燃料的燃烧以及交通尾气的排放.由TEQBa P分析结果可知,33个采样点PAHs的∑16TEQBa P范围为58.2—324.4 ng·g-1干重,平均值为139.3 ng·g~(-1)干重;所有采样点的∑10TEQBa P范围为33.1—266.8 ng·g~(-1)干重,平均值为95.0 ng·g-1干重,均超过荷兰土壤的目标参考值,说明北京市冬季道路沉积物中PAHs存在潜在的生态风险;其中7种致癌性PAHs(Ba A、Chr、Bb F、Bk F、Ba P、IPY和DBA)的TEQBa P占∑16TEQBa P的96.1%—99.3%,平均值为98.5%,是∑16TEQBa P的主要贡献者,并且Ba P的贡献率最大.  相似文献   

3.
本研究基于GC-MS分析了巢湖湖区及入湖河流共40个采样点的表层水及表层沉积物样品中有机氯杀虫剂(OCPs)的含量.研究结果表明,在一年内不同季节中,巢湖湖区及入湖河流表层水体∑OCPs浓度均较低,春季6.09—11.53 ng·L~(-1),夏季6.32—11.10 ng·L~(-1),秋季6.76—16.23 ng·L~(-1),冬季5.97—16.29 ng·L~(-1);相应季节OCPs平均浓度分别为8.33±1.19 ng·L~(-1),8.43±1.21 ng·L~(-1),9.25±1.96 ng·L~(-1)和8.33±2.14 ng·L~(-1).表层水体中OCPs主要为工业生产六六六(HCHs)以及杀虫剂林丹.湖区及入湖河流表层沉积物中OCPs浓度(ng·g~(-1)级别)远高于表层水体(ng·L~(-1)级别)的浓度,∑OCPs浓度范围为2.55—19.03 ng·g~(-1),平均浓度为5.80±4.07 ng·g~(-1),且巢湖西部地区OCPs污染大于东部区域,其中较高浓度的狄氏剂和硫丹成分说明巢湖区域受到这两类物质的污染.异构体分析表明,表层沉积物中OCPs的来源也与周边农田土壤和地表径流所带来的污染以及不同程度工业品HCHs粉剂和林丹的陆源性输入有关;在绝大多数采样点的表层沉积物中滴滴涕类农药(DDTs)的检出为历史的残留污染.生态风险评价表明,巢湖湖区及入湖河流表层水体中OCPs对该区域的生态风险几乎没有影响且表层沉积物中OCPs亦处于较低的风险状态.  相似文献   

4.
江锦花  朱利中  张明 《环境化学》2006,25(5):546-549
研究了椒江口海水、沉积物和生物体中苯胺、硝基苯、多氯联苯、多环芳烃的浓度水平及来源,评价了各种有机污染物在沉积物和生物体内的富集情况.结果表明,椒江口海水中苯胺、硝基苯、多氯联苯(PCBs)、多环芳烃(PAHs)的浓度范围分别为9.3-105.1μg·l-1,46.2-268.5μg·l-1,57.5-519.3ng·l-1和356.9-1021.4 ng·l-1;沉积物中苯胺、多氯联苯、多环芳烃的浓度(干重)范围分别为0.76-1.12μg·g-1,5.78-10.42 ng·g-1,77.5-165.4 ng·g-1;生物体中PCBs、PAHs的浓度(湿重)范围分别为19.51-20.62 ng·g-1,0.11-1.03 ng·g-1.生物体内PCBs的富集倍数高于PAHs,而沉积物中PAHs的富集倍数高于PCBs.海水、沉积物中的苯胺和硝基苯主要来自源于椒江口化工废水的排放,PAHs主要来源于台州火力发电厂的燃烧污染,PCBs主要来源于废旧电器拆解业污染物的排放迁移.  相似文献   

5.
利用固相微萃取、微波萃取与液相色谱联用方法,对滴水湖水系环境中的水样、沉积物和生物样品中16种美国环境保护局优控的多环芳烃(PAHs)进行检测。结果表明,滴水湖水系水体中16种PAHs总量(∑PAHs)为19~446 ng·L~(-1),沉积物中为90~1 410 ng·g~(-1)dw(干重),生物体内为73~426 ng·g~(-1)dw;水中PAHs以2~3环为主,沉积物和水生生物体内均以3~4环为主;与国内外其他水系相比,表层水体中PAHs的污染水平较低,沉积物整体处于低到中度污染水平,生物体处于中等污染水平;滴水湖水体中的贝类食用风险很低,食用过量鲻鱼可能存在潜在致癌风险。污染源分析表明,滴水湖水体环境中PAHs的来源复杂,且随着滴水湖旅游资源及自贸区的开发,游客和交通流量日益增加,游船石油泄漏以及交通石油和汽油的燃烧逐渐成为滴水湖水体环境中有机污染物的主要来源。  相似文献   

6.
2012年8月于云南省采集了16个树皮样品,分析了其中多环芳烃和有机氯农药(包括六六六和滴滴涕)的浓度水平和分布特征.树皮中∑_(16)PAH的浓度范围为317—1194 ng·g~(-1),平均值为639 ng·g~~(-1);研究区域树皮中∑_4HCH和∑_6DDT的浓度分别为为0.10—3.86 ng·g~(-1)干重(平均值为1.10 ng·g~(-1)干重)和0.78—7.29 ng·g~(-1)干重(平均值为3.32 ng·g~(-1)干重),PAHs浓度是藏东南林芝地区的2—3倍,而有机氯农药的浓度低于藏东南林芝地区.树皮中脂肪可影响研究区域持久性有机污染物(Persistent organic pollutants,POPs)的分布,但影响不显著.同时HCHs、DDTs和2环及3环PAHs的浓度随海拔的升高而增加,呈典型的高山冷捕获效应;4环、5环和6环PAHs的浓度随着海拔的升高而降低,这可能是云南本地污染源影响所致.较低质量的PAHs(2—3环)是研究区域PAHs的重要组成部分,平均占总浓度的77%以上,说明研究区域受到污染物大气远距离传输的重要影响.PAHs特征单体比值表明,草、木材等生物质和煤炭燃料等的低温燃烧是研究区域PAHs的主要来源,同时较低的α/γ-HCH和较高的o,p'-DDT/p,p'-DDT比率表明,林丹和三氯杀螨醇的使用对研究区域树皮中有机氯农药的污染有一定的贡献.根据反向气团轨迹模型及PAHs和OCPs的浓度分布,推断研究区域的OCPs主要受印度季风和西风环流的影响,而PAHs是大气远距离传输源和云南本地污染源共同作用的结果.  相似文献   

7.
本研究利用发光细菌急性毒性实验测定了长江口及其邻近海域表层沉积物中有机污染物的复合毒性,同时运用气相色谱-质谱联用仪测定了沉积物中16种美国环境保护局(United States Environmental Protection Agency, US EPA)规定的优先控制的多环芳烃(polycyclic aromatic hydrocarbons, PAHs)的浓度。在此基础上,分析其时空分布特征及多环芳烃毒性贡献,并评估其环境风险。结果表明,2019年长江口及邻近海域表层沉积物中16种PAHs总浓度范围为32.84~283.47 ng·g(-1);2020年浓度范围为66.93~132.64 ng·g(-1);2020年浓度范围为66.93~132.64 ng·g(-1)。在空间分布上,2019年长江口表层沉积物中PAHs在靠近渔港的区域呈现较高浓度(S3=(283.47±29.94) ng·g(-1)。在空间分布上,2019年长江口表层沉积物中PAHs在靠近渔港的区域呈现较高浓度(S3=(283.47±29.94) ng·g(-1)),而2020年在靠近舟山岛的区域呈现较高浓度(L6=(132.64±9.95) ng·g(-1)),而2020年在靠近舟山岛的区域呈现较高浓度(L6=(132.64±9.95) ng·g(-1))。与2019年相比,2020年多环芳烃的平均浓度有所降低,且其细胞毒性量化指标——生物分析当量浓度(BEQ_(bio))的平均值(66.62 mg·kg(-1))。与2019年相比,2020年多环芳烃的平均浓度有所降低,且其细胞毒性量化指标——生物分析当量浓度(BEQ_(bio))的平均值(66.62 mg·kg(-1))远低于2019年(128.20 mg·kg(-1))远低于2019年(128.20 mg·kg(-1))。在长江口沉积物毒性当量浓度中PAHs所占比例较小,2019年和2020年由PAHs引起的细胞毒性的平均占比分别为4.46%和4.25%。该结果表明,检测到的PAHs仅能解释所观察到的复合毒性效应的一小部分,因此,还需要进一步对其他未检测的化学物质进行测试分析。  相似文献   

8.
太湖作为重要的工农业用水水源以及周边居民饮用水源,其水质安全受到高度关注。在太湖西部入湖口采集7个沉积物样品,研究了合成麝香、多环芳烃(PAHs)、有机磷酸酯阻燃剂/增塑剂(OPs)和有机氯农药(OCPs)含量水平和分布规律。研究结果表明,沉积物中多种污染物分布广泛,含量水平差异较大。其中,Σ15PAHs含量371 ng·g~(-1)~2.53$103ng·g~(-1),主要来源于生物质燃烧和化石燃料高温裂解;沉积物中检出4种多环麝香,主要组分为佳乐麝香(HHCB)(0.0792 ng·g~(-1)~1.17 ng·g~(-1))和吐纳麝香(AHTN)(0.123 ng·g~(-1)~1.29 ng·g~(-1)),它们指示了太湖水体已遭受一定程度生活污水输入影响;沉积物中Σ6OPs含量范围为1.63 ng·g~(-1)~21.9 ng·g~(-1),主要污染组分为磷酸三(2-氯丙基)酯(TCPP)和磷酸三(2-氯乙基)酯(TCEP),并呈现明显的点源排放特征;沉积物中六六六系列(HCHs)(0.310 ng·g~(-1)~1.11 ng·g~(-1))和滴滴涕系列(DDTs)(0.551 ng·g~(-1)~6.40 ng·g~(-1))主要来源于历史残留。位于太滆流域的几个入湖口沉积物中多种污染物含量多高于浙江省辖区3个入湖口沉积物。  相似文献   

9.
北江流域抗生素污染水平和来源初探   总被引:1,自引:0,他引:1  
北江是发源于湖南(武水)和江西(浈水),汇于广东韶关,流经广东全境并入海的三大河流之一。为了解整个北江抗生素污染情况,共设置44个采样点,并采集了河水及部分沉积物样品,较全面地分析了各样品中12种典型抗生素含量并初步探究了其污染来源。研究发现,包括北江源头在内的全河段均有抗生素的检出,5类抗生素在表层水和沉积物中的平均浓度分别为77.8 ng·L~(-1)和3.6 ng·g~(-1)。其中,大环内酯类污染最为严重,其含量范围为11.7~114.6 ng·L~(-1)和0~435.3 ng·g~(-1),远高于其他类抗生素。表层水中磺胺类的磺胺甲恶唑和氯霉素类的检出率达100%,其中以磺胺甲恶唑(14.7 ng·L~(-1))和阿奇霉素(25.0 ng·L~(-1))为主,而沉积物中以阿奇霉素(35.9 ng·g~(-1))、氧氟沙星(5.4 ng·g~(-1))和四环素(3.3 ng·g~(-1))为主。由于流域污染源种类和数量不同,各抗生素在北江中的分布也存在差异。表层水中抗生素含量水平表现为下游高于上中游,在沉积物中则主要集中于中、下游之间河段。这反映了人类活动强度对北江抗生素污染的直接影响。  相似文献   

10.
采集长江安庆段及其沿江湖泊群表层沉积物样品共30个,检测16种多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)含量.结果表明,长江安庆段(4个断面)的∑PAHs浓度范围为36.0—221.6 ng·g~(-1)(干重,下同),平均浓度为137.1#76.5 ng·g~(-1);安庆沿江湖泊群(23个采样点)的浓度范围则为45.5—3608.8 ng·g~(-1),平均浓度为941.5±868.5 ng·g~(-1).研究区域内∑PAHs主要以高环(4—6环,HMW)为主,表明主要受交通运输、船舶油类以及化工厂等高温燃烧排放影响.同分异构体分析进一步表明,PAHs主要来源于燃烧排放,不同湖泊存在不同的潜在来源,嬉子湖受到石油排放源、煤木柴燃烧和石油及其精炼产品的燃烧等多重来源影响,而菜子湖中则主要受木材、煤等燃烧源影响,长江安庆段存在石油直接排放源及其燃烧源共同影响.石门湖和白荡湖则以石油及其精炼产品燃烧源为主.生态风险评价表明,长江安庆段及沿江湖泊群表层沉积物中PAHs处于较低的生态风险状态.  相似文献   

11.
本研究在汾河流域上、中、下游及其部分支流布设29个采样点,对其水体和表层沉积物多环芳烃(PAHs)的空间分布规律及生态风险进行了分析和讨论。结果表明,汾河流域水相中丰水期PAHs总量浓度范围是0.530~16.002μg·L~(-1),平均浓度为(2.738±3.078)μg·L~(-1),枯水期PAHs总量浓度范围是0.588~12.916μg·L~(-1),均值为(2.762±3.132)μg·L~(-1)。就空间分布而言,汾河流域整体呈现上游污染较轻,中下游污染严重的特点。PAHs的组成规律显示,丰水期和枯水期PAHs含量均以低环(2~3环)为主,不同采样期低环PAHs所占比例分别为96.5%和90.4%。与其他15个研究地区水体PAHs含量比较,汾河流域水体中PAHs污染程度的国内外对比处于中等到较高程度的污染。丰水期和枯水期水体中PAHs来源于石油源和植物、木材、煤的燃烧,主要受到流域煤化工、燃煤电厂排放污染物的影响。地表水健康风险评价结果显示,汾河流域丰水期和枯水期分别有13.8%和20.7%的点位存在一定的健康风险。汾河流域沉积相中16种PAHs平均浓度为(3.774±1.987)μg·g-1,其污染主要集中在流域中下游地区。PAHs的组成规律显示,PAHs含量集中在低环(2~3环),约占总量的75%左右。与本研究提到的河流、湖泊及港口沉积物中PAHs含量比较,汾河流域沉积物中PAHs污染程度仍处于中等偏高的污染水平。丰水期沉积相中PAHs以燃烧源和石油源为主,部分来自典型石油类产品的输入。表层沉积物生态风险评价结果显示,对于提出的12种PAHs的生态风险的效应区间低值(ERL值)或效应区间中值(ERM值)以及苯并(b)荧蒽(Bb F)和苯并(k)荧蒽(Bk F)这2类没有最低安全值的PAHs化合物来说,汾河上、中、下游流域均有采样点的PAHs可能存在着对生物的潜在生态风险。通过本研究可全面地了解该流域多环芳烃的空间分布规律及其可能的来源,并且为汾河流域多环芳烃污染的控制和生态风险评价提供科学依据。  相似文献   

12.
珠江水体表层沉积物中PAHs的含量与来源研究   总被引:3,自引:0,他引:3  
杜娟  吴宏海  袁敏  管玉峰 《生态环境》2010,19(4):766-770
沿珠江白鹅潭水域及大学城官州河流域设立6个采样点,利用沉积物捕获器收集沉积物。参照美国EPA8000系列方法及质量保证和质量控制,对各采样点表层沉积物中16种多环芳烃(polycyclic aromatic hydrocarbons,PAHs)进行分析,以阐明珠江广州河段表层沉积物中PAHs的含量和分布特征,并结合特征化合物指数对其来源作初步探讨。珠江广州河段表层沉积物中PAHs总量介于4 787.5~8 665 ng·g^-1,平均值为7 078 ng·g^-1,黄沙码头河涌出口沉积物中总量为最高(8 665 ng·g^-1),芳村码头为最低(4 787.5 ng·g^-1)。16种多环芳烃中菲、荧蒽、芘含量较高,分别占PAHs总量的16.11%、14.47%和17.77%。特征化合物荧蒽/202比值均小于0.5,茚并[1,2,3-cd]芘/276比值均大于0.2,表明珠江广州段表层沉积物中PAHs主要来源于化石燃料的不完全燃烧。  相似文献   

13.
The spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River, Harbin, China, were investigated. Seventy-seven samples, 42 water and 35 sediment samples, were collected in April and October of 2007 and January of 2008. The concentrations of total PAHs in water ranged from 163.54 to 2,746.25 ng/L with the average value of 934.62 ng/L, which were predominated by 2- and 3-ring PAHs. The concentrations of total 16 PAHs in sediment ranged from 68.25 to 654.15 ng/g dw with the average value of 234.15 ng/g dw, which were predominated by 4-, 5- and 6-ring PAHs. Statistical analysis of the PAH concentrations shown that the highest concentrations of the total PAHs were found during rainy season (October of 2007) and the lowest during snowy season (January of 2008). Ratios of specific PAH compounds, including fluoranthene/(fluoranthene + pyrene) (Flu/(Flu + Pyr)) and phenanthrene/(phenanthrene + anthracene) (An/(Ant + PhA)), were calculated to evaluate the possible sources of PAH contaminations. These ratios reflected pyrolytic inputs of PAHs in Songhua River water and a mixed pattern of pyrolytic and petrogenic inputs of PAHs in the Songhua River sediments. Ecotoxicological risk levels calculated for PAHs suggested that there were individual PAHs, which can less frequently cause biological impairment in some samples, but no samples had constituents that may frequently cause biological impairment. Total toxic benzo[a]pyrene equivalent of ΣcPAHs varied from 10.03 to 29.7 ng/g dw and from 0.36 to 1.92 ng/g dw for total toxic tetrachlorodibenzo-p-dioxin equivalent. The level of PAHs indicated a low toxicological risk to this area.  相似文献   

14.
Abstract

Twenty-one surface sediments collected from seven surroundings areas of Lake Taihu in two different years were analyzed for total mercury (THg) concentrations, physicochemical characteristics and speciation using a sequential extraction method to assess spatial distribution, sources, and potential ecological risk. Surface sediments from Lake Taihu contained elevated levels of Hg in two sampling years with THg levels ranging from 77 to 346?ng/g (mean 145?ng/g) in October 2010 and ranging from 122 to 573?ng/g (mean 266?ng/g) in November 2012, respectively. The mean THg concentrations in all studied surface sediments exhibited an increasing trend over time. The oxidizable fraction (F3) and residual fraction (F4) were the predominant Hg species in sediments, while more mobile Hg phases of acid-soluble fraction (F1) and reducible fraction (F2) made up less than 0.5% THg. Significant relationships were found between total organic carbon (TOC) and THg and geochemical speciation indicating an important role for organic matter in affecting distribution, mobility, and bioavailability of Hg in sediments. As evidenced by Hakanson’s potential risk index the total ecological risk of Hg was low in the entire Lake Taihu in 2010 but considered moderate in Zhushan Bay, West Coast, and Meiliang Bay in 2012. These findings provide conservation managers with information needed to more effectively regulate the environment of Lake Taihu.  相似文献   

15.
对白洋淀湿地表层沉积物15种多环芳烃含量进行了检测.结果表明,其总含量范围为324.6~1738.5ng·g-1,整体来看,白洋淀湿地多环芳烃污染处于中等偏低污染水平.多环芳烃组成主要以2~3环、4环为主,其含量分别占总含量的47.8%、28.6%.白洋淀湿地表层沉积物多环芳烃主要以化石燃料、木柴及生物质低温燃烧来源为主,个别样点受油类排放污染严重.风险评价表明,严重的多环芳烃生态风险在白洋淀湿地表层沉积物中不存在,但是在部分区域某些多环芳烃含量超过了效应区间低值(ERL),可能存在着对生物的潜在危害.  相似文献   

16.
Concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenol (NP) and octylphenol (OP) were measured in sediments collected during June–August 1998 along the Odra River and its tributaries (Warta, Obrzyca, Barycz, Kaczawa and Bóbr Rivers) in Poland. In addition, raw and treated sewage sludge collected from Gdańsk, Poland, were analyzed for the target compounds. Concentrations of PCBs in sediments varied widely, ranging from 2.7 to 412?ng/g, on a dry weight basis (dry wt). PAHs were the predominant compounds in sediments with concentrations ranging from 150 to 19?000?ng/g, dry wt. The distribution of concentrations of PAHs was more homogenous than that of PCBs. NP concentrations in sediments ranged from <1 to 762?ng/g, while that of OP from <1 to 9.8?ng/g, dry wt. Measured concentrations of target analytes in sediments of the Odra River and its tributaries were comparable to or greater than those reported for riverine sediments in other eastern European countries. Concentrations of total PCBs, PAHs and NP in raw and treated sewage sludge collected from a sewage treatment plant in Gdańsk, Poland, were in the ranges of 203–284, 11?720–13?880 and 6760–99?600?ng/g, dry wt, respectively. Primary treatment of sewage did not appear to reduce PCB or PAH concentrations, although NP and OP concentrations were much less in treated sludge than in raw sludge. This is one of a few studies that document concentrations of PCBs, PAHs and NP in sediments of the Odra River and its tributaries in Poland.  相似文献   

17.
长江流域表层沉积物中多环芳烃分布特征及来源解析   总被引:1,自引:0,他引:1  
黄亮  张经  吴莹 《生态毒理学报》2016,11(2):566-572
长江流域沉积物多环芳烃分析表明,多环芳烃浓度总和(不包括苝)约为10.31~1 239 ng·g-1,与国内外其他区域相比,整体处于一个低至中等程度的污染水平。长江自上游至下游,沉积物中多环芳烃含量呈上升趋势,与沿途各省多环芳烃的排放状况相吻合。扬州(YZ)和湘江(XJ)采样点沉积物中多环芳烃含量最高,污染最严重。根据多环芳烃的比值特征,长江流域沉积物中多环芳烃主要受以煤、木材、油类的燃烧影响较大,还有部分来自油类的泄漏,极少量来自自然成因。  相似文献   

18.
精神活性物质是一类摄入人体后对中枢神经系统具有强烈兴奋或抑制作用的新型污染物,其在水环境中的存在可能对水生生物、水生态系统甚至人体健康产生潜在的危害。为评价太湖中精神活性物质的污染水平和生态风险,利用超高效液相色谱-质谱联用法检测了太湖19条入湖河流中13种典型精神活性物质的质量浓度和空间分布规律。结果表明,在太湖19条入湖河流中除苯甲酰牙子碱(BE)和去甲氯胺酮(NK)外,其余11种目标物均有检出,质量浓度范围为n.d.~43.2 ng·L~(-1)。其中麻黄碱(EPH)的检出率和中间浓度最高,分别为100%和11.0 ng·L~(-1);其次为甲基苯丙胺(METH),检出频率为58%,浓度中值为1.0 ng·L~(-1);苯丙胺(AMP)在东部湖区均未检出。大部分精神活性物质浓度水平较高的河流分布在竺山湾和西太湖,而海洛因(HR)的高值区主要在南太湖。运用风险熵方法对其进行风险评估,结果显示,太湖流域地表水中检出的13种精神活性物质的风险熵值均<0.1,生态风险较低,但其对水生生态系统的长期和综合风险值得关注。  相似文献   

19.
多环芳烃(PAHs)具有高的疏水性,在水体中优先分布于沉积物.采用物种敏感性分布法(SSDs法),依据水生生物慢性毒性数据计算5%物种危害浓度(HC5);并结合欧盟委员会风险评价技术导则(TGD)进而得到沉积物预测无效应浓度(PNEC-sed),以报道的太湖的沉积物中浓度数据作为预测环境浓度(PECsed);用商值法P...  相似文献   

20.
阐述了利用物种敏感性分布进行生态风险评价的原理与方法,构建了淡水生物对8种常见多环芳烃(蒽、芘、苯并[a]芘、荧蒽、菲、芴、苊、萘)的物种敏感性分布;在此基础上,计算了这8种多环芳烃对不同类别生物的HC5(Hazardous Concentration for5%of the species)阈值,预测了不同浓度多环芳烃对生物的潜在影响比例PAF(Potentialaffected fraction),比较了不同类别生物对多环芳烃的敏感性,以及多环芳烃对淡水生物的生态风险,并对以红枫湖、黄河、白洋淀为代表的中国典型水体中的多环芳烃进行了联合生态风险评价.结果表明:1)当污染物浓度达到10μg·L-1时,半数多环芳烃的风险超过了5%的阈值;当浓度上升到100μg·L-1时,只有萘和苊没有显著生态风险.2)对于芴和荧蒽,无脊椎动物更为敏感;而对于萘,则脊椎动物更敏感.3)通过HC5值比较和SSD曲线图比较,可得出污染物对所有物种的生态风险大小依次为:蒽>芘>苯并[a]芘>荧蒽>菲>芴>苊>萘;对脊椎动物风险大小为:荧蒽>苊>萘;对无脊椎动物:蒽>芘>荧蒽>菲>芴>苊>萘.4)多环芳烃在红枫湖、黄河、小白洋淀的生态风险均较低,急性联合msPAF(multisubstance PAF)值小于1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号